Online Appendix to "On the Asymptotic Properties of Debiased Machine Learning Estimators"

Amilcar Velez Department of Economics Northwestern University amilcare@u.northwestern.edu

This version: November 3, 2024. Newest version [here.](https://www.amilcarvelez.com/JMP/DML/online_appendix.pdf)

E Proofs of Auxiliary Results

Notation: Recall $\hat{\eta}_i = \hat{\eta}_k(X_i)$ for $i \in \mathcal{I}_k$ and $n_k = n/K$ is the number of observations on the fold \mathcal{I}_k . Denote $\psi_i^z = \psi^z(W_i, \eta_i)$ and $\hat{\psi}_i^z = \psi^z(W_i, \hat{\eta}_i)$ for $z = a, b$; $m_i = m(W_i, \theta_0, \eta_i)$, and $\hat{m}_i = m(W_i, \theta_0, \hat{\eta}_i)$; $\partial_{\eta} m_i = \partial_{\eta} m(W_i, \theta_0, \eta_i)$ and $\partial_{\eta} \hat{m}_i =$ $\partial_{\eta}m(W_i,\theta_0,\hat{\eta}_i); \ \partial_{\eta}^2m_i=\partial_{\eta}^2m(W_i,\theta_0,\eta_i)$ and $\partial_{\eta}^2\hat{m}_i=\partial_{\eta}^2m(W_i,\theta_0,\hat{\eta}_i)$. Here, $||\cdot||$ is the euclidean norm (ℓ_2 norm), $J_0 = E[\psi_i^a]$, CLT is for Central Limit Theorem, LLN is for Law of Large Numbers, LIE is for Law of Iterated Expectations, C-S is for Cauchy-Schwartz inequality, RHS is for right-hand side.

E.1 Proof of Theorem C.1

Proof. Using the notation of this section, the definitions of the DML1 estimator in (2.6) and the moment function m in (2.2) , it follows

$$
n^{1/2} \left(\hat{\theta}_{n,1} - \theta_0 \right) = K^{-1/2} \sum_{k=1}^K \frac{n_k^{-1/2} \sum_{i \in \mathcal{I}_K} \hat{m}_i}{n_k^{-1} \sum_{i \in \mathcal{I}_K} \hat{\psi}_i^a} ,
$$

and similarly for the oracle version defined in [\(2.8\)](#page-0-0),

$$
n^{1/2} \left(\hat{\theta}_{n,1}^* - \theta_0 \right) = K^{-1/2} \sum_{k=1}^K \frac{n_k^{-1/2} \sum_{i \in \mathcal{I}_K} m_i}{n_k^{-1} \sum_{i \in \mathcal{I}_K} \psi_i^a}.
$$

Using the previous two expressions,

$$
n^{1/2} \left(\hat{\theta}_{n,1} - \hat{\theta}_{n,1}^* \right) = I_1 + I_2
$$

where

$$
I_1 = K^{-1/2} \sum_{k=1}^K \frac{n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{m}_i - m_i)}{n_k^{-1} \sum_{i \in \mathcal{I}_K} \hat{\psi}_i^a} I_2 = K^{-1/2} \sum_{k=1}^K \frac{\left(n_k^{-1/2} \sum_{i \in \mathcal{I}_K} m_i\right) \left(n_k^{-1} \sum_{i \in \mathcal{I}_K} \psi_i^a - \hat{\psi}_i^a\right)}{\left(n_k^{-1} \sum_{i \in \mathcal{I}_K} \hat{\psi}_i^a\right) \left(n_k^{-1} \sum_{i \in \mathcal{I}_K} \psi_i^a\right)}
$$

In what follows, I will show that both I_1 and I_2 are $o_p(1)$, which is sufficient to complete the proof of the theorem.

Claim 1: $I_1 = o_p(1)$. I first rewrite I_1 using the identity $a(1+b)^{-1} = a - ab(1+b)^{-1}$ with $a = \hat{I}_{1,k}$ and $b = I_{1,k}$, where

$$
\hat{I}_{1,k} = n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{m}_i - m_i) / J_0 ,
$$

$$
I_{1,k} = n_k^{-1} \sum_{i \in \mathcal{I}_K} (\hat{\psi}_i^a - J_0) / J_0 .
$$

This implies

$$
I_1 = K^{-1/2} \sum_{k=1}^{K} \hat{I}_{1,k} - \hat{I}_{1,k} I_{1,k} (1 + I_{1,k})^{-1}
$$
 (E.1)

To show the claim, consider the following derivations

$$
|I_{1}| \leq |K^{-1/2} \sum_{k=1}^{K} \hat{I}_{1,k}| + (K^{-1/2} \sum_{k=1}^{K} |\hat{I}_{1,k}| |I_{1,k}|) \times \max_{k=1,\dots,K} \left| n_{k}^{-1} \sum_{i \in \mathcal{I}_{K}} \hat{\psi}_{i}^{a} / J_{0} \right|^{-1}
$$

\n
$$
\stackrel{(2)}{=} \left| n^{-1/2} \sum_{i \in \mathcal{I}_{K}} (\hat{m}_{i} - m_{i}) / J_{0} \right| + (K^{-1/2} \sum_{k=1}^{K} |\hat{I}_{1,k}| |I_{1,k}|) \times O_{p}(1),
$$

\n
$$
\stackrel{(3)}{=} o_{p}(1) + o_{p}(1) \times O_{p}(1),
$$

where (1) holds by triangular inequality used on $(E.1)$ and definition of $I_{1,k}$, (2) holds by definition of $\hat{I}_{1,k}$ and part 2 of Lemma [E.1,](#page-58-0) and (3) hold by part 3 of Lemma [C.2](#page-0-0) and [\(E.2\)](#page-2-0) presented below,

$$
K^{-1/2} \sum_{k=1}^{K} |\hat{I}_{1,k}| |I_{1,k}| = o_p(1) . \tag{E.2}
$$

I use Taylor expansion and the mean value theorem to write $\hat{I}_{1,k} = \hat{I}_{1,1,k} + \hat{I}_{1,2,k}$ and $I_{1,k} = n_k^{-1/2}$ $k_k^{-1/2}(I_{1,1,k}+I_{1,2,k}+I_{1,3,k}),$ where

$$
\hat{I}_{1,1,k} = n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta} m_i / J_0 ,
$$
\n
$$
\hat{I}_{1,2,k} = n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{\eta}_i - \eta_i)^{\top} (\partial_{\eta}^2 \tilde{m}_i / (2J_0)) (\hat{\eta}_i - \eta_i) / J_0 ,
$$
\n
$$
I_{1,1,k} = n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\psi_i^a - J_0) / J_0 ,
$$
\n
$$
I_{1,2,k} = n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta} \psi_i^a / J_0 ,
$$
\n
$$
I_{1,3,k} = n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta}^2 \tilde{\psi}_i^a / (2J_0) (\hat{\eta}_i - \eta_i) ,
$$

with $\partial^2_{\eta} \tilde{m}_i = \partial^2_{\eta} m(W_i, \theta_0, \tilde{\eta}_i)$ for some $\tilde{\eta}_i$, due to mean value theorem, and similar for $\partial_{\eta}^{2} \tilde{\psi}_{i}^{a}$. In what follows I prove $K^{-1/2} \sum_{k=1}^{K} n_{k}^{-1/2}$ $\int_{k}^{-1/2}|\hat{I}_{1,j_1,k}||I_{1,j_2,k}| = o_p(1)$ for $j_1 = 1,2$ and $j_2 = 1, 2, 3$, which is sufficient to prove [\(E.2\)](#page-2-0).

Claim 1.1: $K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2}$ $\int_{k}^{-1/2} |\hat{I}_{1,1,k}| |I_{1,1,k}| = o_p(1)$. Consider the following

$$
K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2} |\hat{I}_{1,1,k}||I_{1,1,k}| \stackrel{(1)}{\leq} \max_{k=1,\dots,K} \left| n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta} m_i / J_0 \right| \times n^{-1/2} \sum_{k=1}^{K} |I_{1,1,k}|
$$

\n
$$
\stackrel{(2)}{=} o_p(1) \times (n^{-1/2} K) \times O_p(1)
$$

\n
$$
\stackrel{(3)}{=} o_p(1),
$$

where (1) holds by definition of $\hat{I}_{1,1,k}$, (2) holds by Lemma [C.3](#page-0-0) and the derivation

presented below, and (3) holds since $K = O(n^{1/2})$.

$$
E\left[n^{-1/2}\sum_{k=1}^{K}|I_{1,1,k}|\right] \stackrel{(1)}{=} n^{-1/2}KE[|I_{1,1,k}|]
$$

$$
\stackrel{(2)}{\leq} n^{-1/2}KE\left[\left(n_k^{-1/2}\sum_{i\in\mathcal{I}_k}(\psi_i^a-J_0)/J_0\right)^2\right]^{1/2}
$$

$$
\stackrel{(3)}{\leq} n^{-1/2}KO(1)
$$

where (1) holds since $I_{1,1,k}$ are i.i.d. random variables, (2) holds by Jensen's inequality and definition of $I_{1,1,k}$, and (3) holds since $\{\psi_i^a - J_0 : i \in \mathcal{I}_k\}$ are zero mean i.i.d. random variables and by parts (a) and (c) of Assumption [3.1.](#page-0-0)

Claim 1.2: $K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2}$ $\int_k^{-1/2} |\hat{I}_{1,1,k}| \times |I_{1,2,k}| = o_p(1)$. It follows by

$$
K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2} |\hat{I}_{1,1,k}| |I_{1,2,k}| \le \max_{k=1,\dots,K} |\hat{I}_{1,1,k}| \times \max_{k=1,\dots,K} |I_{1,2,k}| \times n^{-1/2} K
$$

\n
$$
\stackrel{(1)}{=} o_p(1) \times o_p(1) \times O(1)
$$

where (1) holds by Lemma [C.3](#page-0-0) and because $K = O(n^{1/2})$.

Claim 1.3: $K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2}$ $\int_{k}^{-1/2}|\hat{I}_{1,1,k}||I_{1,3,k}| = o_p(1)$. It follows by

$$
K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2} |\hat{I}_{1,1,k}||I_{1,3,k}| \le \max_{k=1,\dots,K} |\hat{I}_{1,1,k}| \times n^{-1/2} \sum_{k=1}^{K} \left| n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta}^2 \tilde{\psi}_i^a / (2J_0)(\hat{\eta}_i - \eta_i) \right|
$$

\n
$$
\le \max_{k=1,\dots,K} |\hat{I}_{1,1,k}| \times n^{-1/2} \sum_{k=1}^{K} (C_2 p/(2|J_0|)) \times n_k^{-1/2} \sum_{i \in \mathcal{I}_k} ||\hat{\eta}_i - \eta_i||^2
$$

\n
$$
= \max_{k=1,\dots,K} |\hat{I}_{1,1,k}| \times (C_2 p/(2|J_0|)(Kn^{-1/2})^{1/2} n^{1/4} n^{-1} \sum_{i=1}^n ||\hat{\eta}_i - \eta_i||^2
$$

\n
$$
\stackrel{(2)}{=} o_p(1) \times O(1) \times n^{1/4} \times O_p(n^{-2\min\{\varphi_1,\varphi_2\}})
$$

\n
$$
\stackrel{(3)}{=} o_p(1)
$$

where (1) holds by part (e) of Assumption [3.1](#page-0-0) and Loeve's inequality [\(Davidson](#page-61-0) [\(1994,](#page-61-0) Theorem 9.28)), (2) holds by Lemmas [C.3](#page-0-0) and [C.4](#page-0-0) and because $K = O(n^{1/2})$, and

(3) holds since $\min\{\varphi_1, \varphi_2\} > 1/4$.

Claim 1.4: $K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2}$ $\int_k^{-1/2} |\hat{I}_{1,2,k}||I_{1,1,k}| = o_p(1)$. Consider the following derivations,

$$
n^{-1/2} \sum_{k=1}^{K} |\hat{I}_{1,2,k}||I_{1,1,k}|
$$
\n
$$
\leq n^{-1/2} \left(\sum_{k=1}^{K} \left| n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{\eta}_i - \eta_i)^{\top} (\partial_{\eta}^2 \tilde{m}_i / (2J_0)) (\hat{\eta}_i - \eta_i) / J_0 \right|^2 \right)^{1/2} \left(\sum_{k=1}^{K} |I_{1,1,k}|^2 \right)^{1/2}
$$
\n
$$
\leq (C_2 p/2) n_k^{-1/2} \left(\sum_{k=1}^{K} |n_k^{-1/2} \sum_{i \in \mathcal{I}_K} ||\hat{\eta}_i - \eta_i||^2||^2 \right)^{1/2} K^{-1/2} \left(\sum_{k=1}^{K} |I_{1,1,k}|^2 \right)^{1/2}
$$
\n
$$
\leq (C_2 p/2) K^{1/2} \left(\sum_{k=1}^{K} n^{-1} \sum_{i \in \mathcal{I}_K} ||\hat{\eta}_i - \eta_i||^4 \right)^{1/2} \left(K^{-1} \sum_{k=1}^{K} |I_{1,1,k}|^2 \right)^{1/2}
$$
\n
$$
\stackrel{(4)}{=} (Kn^{-1/2})^{1/2} n^{1/4} \times O_p(n^{-2 \min\{\varphi_1, \varphi_2\}}) \times \left(K^{-1} \sum_{k=1}^{K} |I_{1,1,k}|^2 \right)^{1/2}
$$
\n
$$
\stackrel{(5)}{=} O(1) \times n^{1/4} \times O_p(n^{-2 \min\{\varphi_1, \varphi_2\}}) \times O_p(1)
$$
\n
$$
\stackrel{(6)}{=} o_p(1)
$$

where (1) holds by Cauchy-Schwartz and definition of $\hat{I}_{1,2,k}$, (2) holds by part (e) of Assumption [3.1](#page-0-0) and Loeve's inequality [\(Davidson](#page-61-0) [\(1994,](#page-61-0) Theorem 9.28)), (3) holds by Jensen's inequality, (4) holds by Lemma [C.4,](#page-0-0) (5) holds because $K = O(n^{1/2})$, $E[K^{-1}\sum_{k=1}^K |I_{1,1,k}|^2] = O(1)$ by definition of $I_{1,1,k}$ and due to parts (a) and (c) of Assumption [3.1,](#page-0-0) and (6) holds since $\min{\lbrace \varphi_1, \varphi_2 \rbrace} > 1/4$.

Claim 1.5: $K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2}$ $\int_{k}^{-1/2} |\hat{I}_{1,2,k}| |I_{1,2,k}| = o_p(1)$. The proof is similar to the proof of Claim 1.3; therefore, it is omitted.

Claim 1.6: $K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2}$ $\int_{k}^{-1/2} |\hat{I}_{1,2,k}| \times |I_{1,3,k}| = o_p(1)$. Consider the derivations,

$$
K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2} |\hat{I}_{1,2,k}| |I_{1,3,k}| \stackrel{(1)}{\leq} n^{-1/2} \sum_{k=1}^{K} (C_2 p/(2|J_0|))^2 \times \left(n_k^{-1/2} \sum_{i \in \mathcal{I}_k} ||\hat{\eta}_i - \eta_i||^2 \right)^2
$$

$$
\stackrel{(2)}{\leq} (C_2 p/(2J_0))^2 \times n^{1/2} n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_k} ||\hat{\eta}_i - \eta_i||^4
$$

$$
\stackrel{(3)}{=} (C_2 p/(2J_0))^2 \times n^{1/2} \times O_p(n^{-4 \min\{\varphi_1, \varphi_2\}})
$$

$$
\stackrel{(4)}{=} o_p(1) ,
$$

where (1) holds by using the definition of $\hat{I}_{1,2,k}$ and $I_{1,3,k}$, part (e) of Assumption [3.1,](#page-0-0) and Loeve's inequality [\(Davidson](#page-61-0) [\(1994,](#page-61-0) Theorem 9.28)), (2) holds by Jensen's inequality, (3) holds by Lemma [C.4,](#page-0-0) and (4) holds since $\min{\{\varphi_1,\varphi_2\}} > 1/4$.

Claim 2: $I_2 = o_p(1)$. Consider the following representation of I_2 ,

$$
I_2 = K^{-1/2} \sum_{k=1}^K \frac{\left(n_k^{-1/2} \sum_{i \in \mathcal{I}_K} m_i\right) \left(n_k^{-1} \sum_{i \in \mathcal{I}_k} \psi_i^a - \hat{\psi}_i^a\right)}{\left(n_k^{-1} \sum_{i \in \mathcal{I}_K} \hat{\psi}_i^a\right) \left(n_k^{-1} \sum_{i \in \mathcal{I}_k} \psi_i^a\right)}
$$

= $K^{-1/2} \sum_{k=1}^K \frac{n_k^{-1/2} I_{2,k} \hat{I}_{2,k}}{\left(n_k^{-1} \sum_{i \in \mathcal{I}_K} \hat{\psi}_i^a / J_0\right) \left(n_k^{-1} \sum_{i \in \mathcal{I}_k} \psi_i^a / J_0\right)},$

where

$$
I_{2,k} = n_k^{-1/2} \sum_{i \in \mathcal{I}_K} m_i / J_0
$$

$$
\hat{I}_{2,k} = n_k^{-1/2} \sum_{i \in \mathcal{I}_k} (\psi_i^a - \hat{\psi}_i^a) / J_0.
$$

To show the claim, consider the following derivation

$$
|I_2| \leq \max_{k=1,\dots,K} \left| n_k^{-1} \sum_{i \in \mathcal{I}_K} \hat{\psi}_i^a / J_0 \right|^{-1} \times \max_{k=1,\dots,K} \left| n_k^{-1} \sum_{i \in \mathcal{I}_K} \psi_i^a / J_0 \right|^{-1} \times K^{-1} \sum_{k=1}^K n_k^{-1/2} |I_{2,k}| |\hat{I}_{2,k}|
$$

\n
$$
\stackrel{(2)}{=} O_p(1) \times O_p(1) \times o_p(1) ,
$$

where (1) holds by triangular inequality and definition of I_2 , and (2) by Lemma [E.1](#page-58-0) and [\(E.3\)](#page-5-0) presented below,

$$
K^{-1} \sum_{k=1}^{K} n_k^{-1/2} |\hat{I}_{2,k}| |I_{2,k}| = o_p(1) . \tag{E.3}
$$

As in the proof of claim 1, I use Taylor approximation and mean value theorem to

write $\hat{I}_{2,k} = \hat{I}_{2,1,k} + \hat{I}_{2,2,k}$, where

$$
\hat{I}_{2,1,k} = n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta} \psi_i^a / J_0 ,
$$

$$
\hat{I}_{2,2,k} = n_k^{-1/2} \sum_{i \in \mathcal{I}_K} (\hat{\eta}_i - \eta_i)^{\top} (\partial_{\eta}^2 \tilde{\psi}_i^a / (2J_0)) (\hat{\eta}_i - \eta_i) / J_0 .
$$

Finally, in what follows I prove $K^{-1/2} \sum_{k=1} n_k^{-1/2}$ $\int_{k}^{-1/2}|\hat{I}_{2,j,k}||I_{2,k}| = o_p(1)$ for $j = 1, 2,$ which is sufficient to prove $(E.3)$.

Claim 2.1: $K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2}$ $\int_{k}^{-1/2} |\hat{I}_{2,1,k}| |I_{2,k}| = o_p(1)$. The proof is similar to the one in Claim 1.1; therefore, it is omitted.

Claim 2.2: $K^{-1/2} \sum_{k=1}^{K} n_k^{-1/2}$ $\int_{k}^{-1/2} |\hat{I}_{2,2,k}| |I_{2,k}| = o_p(1)$. The proof is similar to the one in Claim 1.4; therefore, it is omitted. \Box

E.2 Proof of Theorem [C.2](#page-0-0)

Proof. Notation: In the proof of this theorem, $x_{n,K} = o_p(1)$ denotes a sequence of random variables $x_{n,K}$ converging to zero uniformly on $K \to \infty$ as $n \to \infty$ (equivalently, $\lim_{n\to\infty} \sup_{K\leq n} P(|x_{n,K}| > \epsilon) = 0$ for any given $\epsilon > 0$.

Using the definitions of the DML2 estimator in (2.7) and the moment function m in (2.2) , it follows

$$
n^{1/2} \left(\hat{\theta}_{n,2} - \theta_0 \right) = \frac{n^{-1/2} \sum_{i=1}^n \hat{m}_i}{n^{-1} \sum_{i=1}^n \hat{\psi}_i^a},
$$

and similarly for the oracle version defined in [\(2.9\)](#page-0-0),

$$
n^{1/2} \left(\hat{\theta}_{n,2}^* - \theta_0 \right) = \frac{n^{-1/2} \sum_{i=1}^n m_i}{n^{-1} \sum_{i=1}^n \psi_i^a}.
$$

Using the previous two expressions, it follows

$$
n^{1/2} \left(\hat{\theta}_{n,2} - \hat{\theta}_{n,2}^* \right) = I_1 + I_2
$$

where

$$
I_1 = \frac{n^{-1/2} \sum_{i=1}^n (\hat{m}_i - m_i)/J_0}{n^{-1} \sum_{i=1}^n \hat{\psi}_i^a / J_0}
$$
(E.4)

$$
I_2 = \frac{\left(n^{-1/2} \sum_{i=1}^n m_i / J_0\right) \left(n^{-1} \sum_{i=1}^n (\psi_i^a - \hat{\psi}_i^a) / J_0\right)}{\left(n^{-1} \sum_{i=1}^n \hat{\psi}_i^a / J_0\right) \left(n^{-1} \sum_{i=1}^n \psi_i^a / J_0\right)}
$$
(E.5)

In what follows, I show that $I_1 = \mathcal{T}_{n,K}^l + \mathcal{T}_{n,K}^{nl} + o_p(n^{-\zeta})$ and $I_2 = o_p(n^{-\zeta})$, which is sufficient to complete the proof of the theorem since both $\mathcal{T}_{n,K}^l$ and $\mathcal{T}_{n,K}^{nl}$ are $O_p(n^{-\varphi_1})$ and $O_p(n^{1/2-2\varphi_1})$, respectively, under Assumptions [3.1](#page-0-0) and [3.2](#page-0-0) and by the proof of Propositions [C.4](#page-0-0) and [C.5.](#page-0-0) Furthermore, if Assumption [3.3](#page-0-0) holds, part 2 of Proposition [C.5](#page-0-0) implies $\text{Var}[n^{2\varphi_1-1/2}\mathcal{T}_{n,K}^{nl}] = G_{\delta}(K^2-3K+3)(K-1)^{-1-4\varphi_1}K^{4\varphi_1-1}+n^{4\varphi_1-1}r_{n,K}^{nl}$, which implies that $\lim_{n\to\infty} \inf_{K\leq n} \text{Var}[n^{2\varphi_1-1/2} \mathcal{T}_{n,K}^{nl}] > 0$. Part 1 of Proposition [C.5](#page-0-0) implies that $\sup_{K\leq n}|n^{2\varphi_1-1/2}E[\mathcal{T}_{n,K}^{nl}]|<\infty;$ then, $\lim_{n\to\infty}\sup_{K\leq n}E[(n^{2\varphi_1-1/2}\mathcal{T}_{n,K}^{nl})^2]<\infty.$ Simi-larly, the proof of Propositions [C.4](#page-0-0) guarantees $\lim_{n\to\infty} \sup_{K\leq n} E[(n^{\varphi_1} \mathcal{T}_{n,K}^l)^2] < \infty$.

Claim 1: $I_1 = \mathcal{T}_{n,K}^l + \mathcal{T}_{n,K}^{nl} + o_p(n^{-\zeta})$. I first rewrite the RHS of [\(E.4\)](#page-7-0) using the identity $a(1+b)^{-1} = a - ab(1+b)^{-1}$, where $a = \frac{n^{-1/2}}{2} \sum_{i=1}^{n} (\hat{m}_i - m_i)/J_0$ and $b =$ $n^{-1} \sum_{i=1}^{n} (\hat{\psi}_i^a - J_0)/J_0$. That is

$$
I_1 = a - ab(1 + b)^{-1}
$$

I then conclude the proof of the claim by using claims 1.1 and 1.2, stated below.

Claim 1.1: $a = \mathcal{T}_{n,K}^l + \mathcal{T}_{n,K}^{nl} + o_p(n^{-\zeta})$. This result holds by part 4 of Lemma [C.2](#page-0-0) since $a = n^{-1/2} \sum_{i=1}^{n} (\hat{m}_i - m_i)/J_0$.

Claim 1.2: $ab(1+b)^{-1} = o_p(n^{-\zeta})$. Note that part 4 of Lemma [C.2](#page-0-0) implies $a =$ $O_p(n^{1/2-2\varphi_1})$. Note also that part 2 of Lemma [C.2](#page-0-0) and CLT imply $b = O_p(n^{-1/2})$, which guarantees that $(1+b)^{-1} = O_p(1)$; therefore, $ab(1+b)^{-1} = O_p(n^{-2\varphi_1})$, which is $o_p(n^{-\zeta})$ since $\varphi_1 < 1/2$.

Claim 2: $I_2 = o_p(n^{-\zeta})$. I first rewrite I_2 defined in [\(E.5\)](#page-7-1) as follows,

$$
I_2 = ab(1 + c - b)^{-1}(1 + c)^{-1},
$$

where $a = n^{-1/2} \sum_{i=1}^n m_i / J_0$, $b = n^{-1} \sum_{i=1}^n (\psi_i^a - \hat{\psi}_i^a) / J_0$, and $c = n^{-1} \sum_{i=1}^n (\psi_i^a - \hat{\psi}_i^a)$

 J_0 / J_0 . CLT implies that $a = O_p(1)$ and $c = O_p(n^{-1/2})$. Part 2 of Lemma [C.2](#page-0-0) implies $b = O_p(n^{-2\varphi_1})$. Therefore, $ab = O_p(n^{-2\varphi_1})$, and both $(1 + c - b)^{-1}$ and $(1 + c)^{-1}$ are $O_p(1)$. This implies I_2 is $O_p(n^{-2\varphi_1})$, which is $o_p(n^{-\zeta})$ since $\varphi_1 < 1/2$. \Box

E.3 Proof of Proposition [C.1](#page-0-0)

Proof. Part 1: By the definition of the oracle version of the DML1 estimator in (2.8) and the moment function m in (2.2) , it follows

$$
n^{1/2} \left(\hat{\theta}_{n,1}^* - \theta_0 \right) = K^{-1/2} \sum_{k=1}^K \frac{n_k^{-1/2} \sum_{i \in \mathcal{I}_K} m_i}{n_k^{-1} \sum_{i \in \mathcal{I}_K} \psi_i^a} \,. \tag{E.6}
$$

I first rewrite the RHS of [\(E.6\)](#page-8-0) using the identity $a_k(1+b_k)^{-1} = a_k - a_k b_k +$ $a_k b_k^2 (1 + b_k)^{-1}$ with $a_k = n_k^{-1/2}$ $\sum_{i \in \mathcal{I}_k} m_i / J_0$ and $b_k = n_k^{-1}$ $\sum_{i\in\mathcal{I}_k} (\psi_i^a - J_0)/J_0$. That is

$$
n^{1/2} \left(\hat{\theta}_{n,1}^* - \theta_0 \right) = I_1 + I_2 + I_3 ,
$$

where

$$
I_1 = K^{-1/2} \sum_{k=1}^{K} a_k
$$

\n
$$
I_2 = -K^{-1/2} \sum_{k=1}^{K} a_k b_k
$$

\n
$$
I_3 = K^{-1/2} \sum_{k=1}^{K} a_k b_k^2 (1 + b_k)^{-1}
$$

By CLT, it follows $I_1 = n^{-1/2} \sum_{i=1}^n m_i / J_0 \stackrel{d}{\to} N(0, \sigma^2)$ as $n \to \infty$, where σ^2 is as in [\(2.11\)](#page-0-0). Therefore, if $I_2 - K/\sqrt{n}\Lambda$ and I_3 are $o_p(1)$, then

$$
n^{1/2} \left(\hat{\theta}_{n,1}^* - \theta_0 \right) = n^{-1/2} \sum_{i=1}^n m_i / J_0 + K / \sqrt{n} \Lambda + o_p(1) ,
$$

which is sufficient to complete the proof of part 1 since $K/\sqrt{n} \to c$ as $n \to \infty$. In what follows, Claim 1 shows $I_2 - K/\sqrt{n}\Lambda = o_p(1)$ and Claim 2 shows I_3 are $o_p(1)$.

Claim 1: $I_2 - K/\sqrt{n}\Lambda = o_p(1)$. First, note that $E[-a_kb_k] = K^{1/2}/\sqrt{n}$ $\overline{n}\Lambda$ due to the following derivations,

$$
E[a_k b_k] \stackrel{(1)}{=} E\left[\left(n_k^{-1/2} \sum_{i \in \mathcal{I}_k} m_i / J_0 \right) \left(n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 \right) \right]
$$

$$
\stackrel{(2)}{=} n_k^{-1/2} E\left[(m_i / J_0) \left((\psi_i^a - J_0) / J_0 \right) \right]
$$

$$
\stackrel{(3)}{=} -n^{-1/2} K^{1/2} \Lambda
$$

where (1) holds by definition of a_k and b_k , (2) holds since $\{(m_i, \psi_i^a - J_0) : i \in \mathcal{I}_k\}$ are zero mean i.i.d. random vectors, and (3) holds by the definition of Λ in [\(3.6\)](#page-0-0) and condition (2.1) .

Therefore, $E[I_2] = -K^{-1/2} \sum_{k=1}^{K} E[a_k b_k] = K/\sqrt{n}\Lambda$, which implies that the claim is equivalent to show that $I_2-E[I_2]$ is $o_p(1)$, which follows by the following derivations

$$
E [(I_2 - E[I_2])^2] \stackrel{\text{(1)}}{=} E \left[\left(K^{-1/2} \sum_{k=1}^K (a_k b_k - E[a_k b_k]) \right)^2 \right]
$$

\n
$$
\stackrel{\text{(2)}}{=} K^{-1} \sum_{k=1}^K E [(a_k b_k - E[a_k b_k])^2]
$$

\n
$$
\stackrel{\text{(3)}}{\leq} E [(a_k b_k)^2]
$$

\n
$$
\stackrel{\text{(4)}}{=} n_k^{-1} E \left[\left(n_k^{-1/2} \sum_{i \in \mathcal{I}_k} m_i / J_0 \right)^2 \left(n_k^{-1/2} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 \right)^2 \right]
$$

\n
$$
\stackrel{\text{(5)}}{\leq} n_k^{-1} E \left[\left(n_k^{-1/2} \sum_{i \in \mathcal{I}_k} m_i / J_0 \right)^4 \right]^{1/2} \times E \left[\left(n_k^{-1/2} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 \right)^4 \right]^{1/2}
$$

\n
$$
\stackrel{\text{(6)}}{=} n_k^{-1} \times O(1) \times O(1)
$$

where (1) holds by definition of I_2 ; (2) and (3) hold since $\{a_kb_k - E[a_kb_K] : 1 \leq$ $k \leq K$ } are zero mean i.i.d random variables due to the definition of a_k and b_k ; (4) holds by definition of a_k and b_k ; (5) holds by Cauchy-Schwartz; and (6) holds since $\{(m_i, \psi_i^a - J_0) : i \in \mathcal{I}_k\}$ are zero mean i.i.d. random vectors, parts (a) and (c) of Assumption [3.1,](#page-0-0) and $n_k \to \infty$. This completes the proof of Claim 1.

Claim 2: $I_3 = o_p(1)$. Consider the following derivation

$$
|I_3| \leq \max_{k=1,\dots,K} \left| 1 + n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 \right|^{-1} \times K^{-1/2} \sum_{k=1}^K |a_k| b_k^2
$$

= $O_p(1) \times o_p(1)$,

where (1) holds by definition of I_3 and triangular inequality, and (2) holds by Lemma [E.1](#page-58-0) and [\(E.7\)](#page-10-0) presented below,

$$
K^{-1/2} \sum_{k=1}^{K} |a_k| b_k^2 = o_p(1) . \tag{E.7}
$$

To prove $(E.7)$, consider the following

$$
E\left[K^{-1/2}\sum_{k=1}^{K} |a_k|b_k^2\right] \stackrel{(1)}{\leq} K^{-1/2}\sum_{k=1}^{K} E[|a_k|^2]^{1/2} E[|b_k|^4]^{1/2}
$$
\n
$$
\stackrel{(2)}{=} K^{1/2}n_k^{-1} E\left[\left(n_k^{-1/2}\sum_{i\in\mathcal{I}_k} m_i/J_0\right)^2\right]^{1/2} \times E\left[\left(n_k^{-1/2}\sum_{i\in\mathcal{I}_k} (\psi_i^a - J_0)/J_0\right)^4\right]^{1/2}
$$
\n
$$
\stackrel{(3)}{=} (Kn^{-1/2})^{3/2}n^{-1/4}O(1) \times O(1)
$$
\n
$$
\stackrel{(4)}{=} o(1),
$$

where (1) holds by Cauchy-Schwartz, (2) holds since $\{(a_k, b_k) : 1 \leq k \leq K\}$ are i.i.d random vectors and the definition of a_k and b_k , (3) holds since $\{(m_i, \psi_i^a - J_0) : i \in \mathcal{I}_k\}$ are zero mean i.i.d. random vectors, and parts (a) and (c) of Assumption [3.1,](#page-0-0) and (4) holds since $K = O(n^{1/2})$. This completes the proof of Claim 2.

Part 2: By the definition of $\hat{\theta}_{n,2}^*$ in [\(2.9\)](#page-0-0), and the moment function m in [\(2.2\)](#page-0-0), it follows

$$
n^{1/2} \left(\hat{\theta}_{n,2}^* - \theta_0 \right) = \frac{n^{-1/2} \sum_{i=1}^n m_i / J_0}{n^{-1} \sum_{i=1}^n \psi_i^a / J_0}
$$

Since the denominator converges to 1 in probability by the LLN and the numerator converges to $N(0, \sigma^2)$ in distribution due to the CLT, it follows that $n^{1/2} \left(\hat{\theta}_{n,2}^* - \theta_0\right)$ converges in distribution to $N(0, \sigma^2)$. This completes the proof of part 2

E.4 Proof of Proposition [C.2](#page-0-0)

Proof. Part 1: By the definition of the oracle version of DML2 estimator in (2.9) , and the moment function m in (2.2) , it follows

$$
n^{1/2} \left(\hat{\theta}_{n,2}^* - \theta_0 \right) = \frac{n^{-1/2} \sum_{i=1}^n m_i}{n^{-1} \sum_{i=1}^n \psi_i^a} .
$$
 (E.8)

I rewrite the RHS of $(E.8)$ using the identity $a(1+b)^{-1} = a - ab + ab^2(1+b)^{-1}$ with $a = n^{-1/2} \sum_{i=1}^n m_i / J_0$ and $b = n^{-1} \sum_{i=1}^n (\psi_i^a - J_0) / J_0$. That is

$$
n^{1/2} \left(\hat{\theta}_{n,2}^* - \theta_0 \right) = a - ab + ab^2 (1+b)^{-1}
$$

$$
\stackrel{(1)}{=} \mathcal{T}_n^* + \mathcal{T}_n^{dml2} + ab^2 (1+b)^{-1}
$$

where (1) holds by the definition of \mathcal{T}_n^* and \mathcal{T}_n^{dml2} . It is sufficient to show $ab^2(1+b)^{-1}$ is $O_p(n^{-1})$ to complete the proof, which follows by CLT that implies $a = O_p(1)$ and $b = O_p(n^{-1/2})$, and $(1 + b)^{-1} = O_p(1)$.

Finally, consider the following derivations

$$
E[\mathcal{T}_n^{dml2}] \stackrel{(1)}{=} -n^{-1/2} E\left[\left(n^{-1/2} \sum_{i=1}^n m_i / J_0 \right) \left(n^{-1/2} \sum_{i=1}^n (\psi_i^a - J_0) / J_0 \right) \right]
$$

$$
\stackrel{(2)}{=} -n^{-1/2} \Lambda
$$

where (1) holds by the definition of \mathcal{T}_n^{dm2} , and (2) holds since $\{(m_i, (\psi_i^a - J_0)/J_0)$: $1 \leq i \leq n$ are zero mean i.i.d. random vectors and by the definition of Λ in [\(3.6\)](#page-0-0).

Part 2: By definition of σ^2 and since $\{(m_i/J_0): 1 \leq i \leq n\}$ are zero mean i.i.d. random variables, it follows that $E[\mathcal{T}_n^*]=0$ and $E[(\mathcal{T}_n^*)^2]=\sigma^2$.

Part 3: First note that $Cov(\mathcal{T}_n^*, \mathcal{T}_n^{dml2}) = E[(\mathcal{T}_n^*)(\mathcal{T}_n^{dml2})]$. Now, consider the following derivations,

$$
E[(\mathcal{T}_n^*)(\mathcal{T}_n^{dml2})] \stackrel{(1)}{=} -n^{-1/2}E\left[\left(n^{-1/2}\sum_{i=1}^n m_i/J_0\right)^2 \left(n^{-1/2}\sum_{i=1}^n (\psi_i^a - J_0)/J_0\right)\right]
$$

$$
\stackrel{(2)}{=} -n^{-1}E\left[\left(m_i/J_0\right)^2 \left((\psi_i^a - J_0)/J_0\right)\right]
$$

$$
\stackrel{(3)}{=} -n^{-1}\Xi_1
$$

where (1) holds by definition of \mathcal{T}_n^* and \mathcal{T}_n^{dm2} , (2) holds since $\{(m_i/J_0, (\psi_i^a - J_0)/J_0)$: $1 \leq i \leq n$ are zero mean i.i.d. random vectors, and (3) holds by definition of Ξ_1 in $(C-1)$.

Similarly, consider the following derivations

$$
Var[\mathcal{T}_n^{dml2}] \stackrel{(1)}{=} n^{-1}E\left[\left(n^{-1/2}\sum_{i=1}^n m_i/J_0\right)^2 \left(n^{-1/2}\sum_{i=1}^n (\psi_i^a - J_0)/J_0\right)^2\right] - n^{-1}\Lambda^2
$$

$$
\stackrel{(2)}{=} n^{-1}\left(E[(m_i/J_0)^2]E[((\psi_i^a - J_0)/J_0)^2] + 2\Lambda^2 + O(n^{-1})\right) - n^{-1}\Lambda^2
$$

$$
\stackrel{(3)}{=} n^{-1}(\sigma^2\sigma_a^2 + \Lambda^2) + O(n^{-2})
$$

where (1) holds by definition of \mathcal{T}_n^{dm2} and Λ in [\(A-4\)](#page-0-0) and [\(3.6\)](#page-0-0), respectively, (2) holds since $\{(m_i/J_0, (\psi_i^a - J_0)/J_0) : 1 \le i \le n\}$ are zero mean i.i.d. random vectors and by definition of Λ , and (3) holds by definition of σ^2 and σ_a^2 in [\(2.11\)](#page-0-0) and [\(C-2\)](#page-0-0), \Box respectively.

E.5 Proof of Proposition [C.3](#page-0-0)

Proof. For $i \in \mathcal{I}_k$, denote $\Delta_i = \Delta_i^b + \Delta_i^l$, where

$$
\Delta_i^l = n_0^{-\varphi_1} n_0^{-1/2} \sum_{j \notin \mathcal{I}_k} \delta_{n_0, j, i} ,
$$

$$
\Delta_i^b = n_0^{-\varphi_2} n_0^{-1} \sum_{j \notin \mathcal{I}_k} b_{n_0, j, i} ,
$$

Here, $\delta_{n_0,j,i} = \delta_{n_0}(W_j, X_i)$ and $b_{n_0,j,i} = b_{n_0}(X_j, X_i)$, and δ_{n_0} and b_{n_0} are functions satisfying Assumption [3.2.](#page-0-0)

Part 1: Using the previous notation, it holds that $E[(\Delta_i)^T \partial_{\eta} m_i / J_0] = 0$. To see this, consider the following derivations

$$
E[(\Delta_i)^\top \partial_{\eta} m_i / J_0] \stackrel{(1)}{=} E[(\Delta_i)^\top E[\partial_{\eta} m_i / J_0 \mid (W_j : j \notin \mathcal{I}_k), X_i]]
$$

$$
\stackrel{(2)}{=} E[(\Delta_i)^\top E[\partial_{\eta} m_i / J_0 \mid X_i]]
$$

 $\overset{(3)}{=}0$,

where (1) holds by the law of interactive expectations and because Δ_i is non-stochastic conditional on $(W_j : j \notin \mathcal{I}_k)$ and X_i , (2) holds since $\{W_j : 1 \leq j \leq n\}$ are i.i.d. random vectors and $i \in \mathcal{I}_k$, and (3) holds by the Neyman orthogonality condition (part (b) of Assumption [3.1\)](#page-0-0).

Therefore, $E[\mathcal{T}_{n,K}^l]=0$ holds due to the definition of $\mathcal{T}_{n,K}^l$ in [\(A-3\)](#page-0-0) and the previous result,

$$
E[\mathcal{T}_{n,K}^l] = n^{-1/2} \sum_{i=1}^n E[(\Delta_i)^\top \partial_\eta m_i / J_0]
$$

= 0.

Part 2: By part 1, $Var[\mathcal{T}_{n,K}^l] = E[(\mathcal{T}_{n,K}^l)^2]$. Now, consider the following decomposition:

$$
E[(\mathcal{T}_{n,K}^l)^2] = E\left[\left(n^{-1/2} \sum_{i=1}^n (\Delta_i)^{\top} \partial_{\eta} m_i / J_0 \right)^2 \right]
$$

= $n^{-1} \sum_{i_1=1}^n \sum_{i_2=1}^n E\left[\left((\Delta_{i_1})^{\top} \partial_{\eta} m_{i_1} / J_0 \right) \left((\Delta_{i_2})^{\top} \partial_{\eta} m_{i_2} / J_0 \right) \right]$
= $I_1 + 2I_2 + I_3$,

where I use $\Delta_i = \Delta_i^l + \Delta_i^b$ in the last equality, with I_1 , I_2 , and I_3 defined below,

$$
I_{1} = n^{-1} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} E\left[\left((\Delta_{i_{1}}^{l})^{\top} \partial_{\eta} m_{i_{1}} / J_{0} \right) \left((\Delta_{i_{2}}^{l})^{\top} \partial_{\eta} m_{i_{2}} / J_{0} \right) \right]
$$

\n
$$
I_{2} = n^{-1} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} E\left[\left((\Delta_{i_{1}}^{l})^{\top} \partial_{\eta} m_{i_{1}} / J_{0} \right) \left((\Delta_{i_{2}}^{b})^{\top} \partial_{\eta} m_{i_{2}} / J_{0} \right) \right]
$$

\n
$$
I_{3} = n^{-1} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} E\left[\left((\Delta_{i_{1}}^{b})^{\top} \partial_{\eta} m_{i_{1}} / J_{0} \right) \left((\Delta_{i_{2}}^{b})^{\top} \partial_{\eta} m_{i_{2}} / J_{0} \right) \right]
$$

In what follows, I show $I_1 = n_0^{-2\varphi_1} G_{\delta}^l + o(n^{-2\varphi_1})$ with G_{δ}^l defined as in [\(A-6\)](#page-0-0), $I_2 = 0$,

and $I_3 = O(n^{-2\varphi_1})$, which is sufficient to complete the proof of Part 2. *Claim 1:* $I_1 = n_0^{-2\varphi_1} G_{\delta}^l + o(n^{-2\varphi_1})$. Consider the following derivations,

$$
I_{1} = n^{-1} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} E\left[\left((\Delta_{i_{1}}^{l})^{\top} \partial_{\eta} m_{i_{1}} / J_{0} \right) \left((\Delta_{i_{2}}^{l})^{\top} \partial_{\eta} m_{i_{2}} / J_{0} \right) \right] \n= n^{-1} \sum_{k_{1},k_{2}=1}^{K} \sum_{i_{1} \in \mathcal{I}_{k_{1}}} \sum_{i_{2} \in \mathcal{I}_{k_{2}}} n_{0}^{-2\varphi_{1}} n_{0}^{-1} \sum_{j_{1} \notin \mathcal{I}_{k_{1}}} \sum_{j_{2} \notin \mathcal{I}_{k_{2}}} E\left[\left(\delta_{n_{0},j_{1},i_{1}}^{\top} \partial_{\eta} m_{i_{1}} / J_{0} \right) \left(\delta_{n_{0},j_{2},i_{2}}^{\top} \partial_{\eta} m_{i_{2}} / J_{0} \right) \right] \n= n^{-1} \sum_{k_{1},k_{2}=1}^{K} \sum_{i_{1} \in \mathcal{I}_{k_{1}}} \sum_{i_{2} \in \mathcal{I}_{k_{2}}} n_{0}^{-2\varphi_{1}} n_{0}^{-1} \sum_{j_{1} \notin \mathcal{I}_{k_{1}}} \sum_{j_{2} \notin \mathcal{I}_{k_{2}}} E\left[\left(\delta_{n_{0},j_{1},i_{1}}^{\top} \partial_{\eta} m_{i_{1}} / J_{0} \right) \left(\delta_{n_{0},j_{2},i_{2}}^{\top} \partial_{\eta} m_{i_{2}} / J_{0} \right) \right] I\{k_{1} \neq k_{2}\} \n+ n^{-1} \sum_{k=1}^{K} \sum_{i_{1} \in \mathcal{I}_{k}} \sum_{i_{2} \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}} n_{0}^{-1} \sum_{j_{1} \notin \mathcal{I}_{k}}} \sum_{j_{2} \notin \mathcal{I}_{k}} E\left[\left(\delta_{n_{0},j_{1},i_{1}}^{\top} \partial_{\eta} m_{i_{1}} / J_{0} \right) \left(\delta_{n_{0},j_{2},i_{2}}^{\top} \partial_{\eta} m_{i_{2}} / J_{0} \right) \right] I\{i_{1} \neq i
$$

$$
\stackrel{(6)}{=} n_0^{-2\varphi_1} G_{\delta}^l + o(n^{-2\varphi_1}),
$$

where (1) holds because there are 3 possible situations for $i_1 \in \mathcal{I}_{k_1}$ and $i_2 \in \mathcal{I}_{k_2}$: i) $k_1 \neq k_2$, ii) $k_1 = k_2$ but $i_1 \neq i_2$, and iii) $i_1 = i_2$, (2) holds by the law of iterative expectations and since

$$
E\left[\left(\delta_{n_0,i_2,i_1}^{\top}\partial_{\eta}m_{i_1}/J_0\right)\left(\delta_{n_0,i_1,i_2}^{\top}\partial_{\eta}m_{i_2}/J_0\right) \mid X_{i_1}, W_{i_2}, W_{j_1}, W_{j_2}\right] = 0
$$
, when $i_1 \neq j_2$

and

$$
E\left[\left(\delta_{n_0,i_2,i_1}^{\top}\partial_{\eta}m_{i_1}/J_0\right)\left(\delta_{n_0,i_1,i_2}^{\top}\partial_{\eta}m_{i_2}/J_0\right) \mid X_{i_2}, W_{i_1}, W_{j_1}, W_{j_2}\right] = 0, \text{ when } i_2 \neq j_1,
$$

(3) holds by the law of iterative expectations and since

$$
E\left[\left(\delta_{n_0,j_1,i_1}^{\top}\partial_{\eta}m_{i_1}/J_0\right)\left(\delta_{n_0,j_2,i_2}^{\top}\partial_{\eta}m_{i_2}/J_0\right) \mid X_{i_2}, W_{i_1}, W_{j_1}, W_{j_2}\right] = 0
$$
, when $i_1 \neq i_2$,

(4) holds since $\{(\delta^{\top}_{n_0,j,i}\partial_{\eta}m_i/J_0) : j \notin \mathcal{I}_k\}$ are i.i.d. random variables conditional on W_i (here I use $i \in \mathcal{I}_k$), by noting that $\sum_{k_2=1}^K I_{k_2\neq k_1} \sum_{i_2 \in \mathcal{I}_{k_2}} (\cdot) = \sum_{i_2 \notin \mathcal{I}_{k_1}} (\cdot)$, and recalling that n_0 is the number of observations outside the fold \mathcal{I}_k , (5) holds because the random variables $\{(\delta^{\top}_{n_0,i_2,i_1}\partial_{\eta}m_{i_1}/J_0)(\delta^{\top}_{n_0,i_1,i_2}\partial_{\eta}m_{i_2}/J_0): i_1 \neq i_2\}$ are identically distributed, and (6) holds by the definition of G_{δ}^{l} in $(A-6)$ and $n/2 \leq n_0 \leq n$. This completes the proof of claim 1.

Claim 2: $I_2 = 0$. First, consider the following derivations

$$
E\left[\left((\Delta_{i_1}^l)^{\top}\partial_{\eta}m_{i_1}/J_0\right)\left((\Delta_{i_2}^b)^{\top}\partial_{\eta}m_{i_2}/J_0\right)\right]
$$

\n
$$
\stackrel{(1)}{=} n_0^{-\varphi_1-\varphi_2}n_0^{-3/2}\sum_{j_1\notin\mathcal{I}_{k_1}}\sum_{j_2\notin\mathcal{I}_{k_2}}E\left[\left(\delta_{n_0,j_1,i_1}^{\top}\partial_{\eta}m_{i_1}/J_0\right)\left(b_{n_0,j_2,i_2}^{\top}\partial_{\eta}m_{i_2}/J_0\right)\right]
$$

\n
$$
\stackrel{(2)}{=}0,
$$

where (1) holds by definition of Δ_i^l and Δ_i^b , and (2) holds by considering 3 possible cases:

• If $j_1 \neq i_2$ and $j_1 \neq j_2$ (j_1 different than all other sub-indices), then

$$
E\left[\left(\delta_{n_0,j_1,i_1}^{\top}\partial_{\eta}m_{i_1}/J_0\right)\left(\delta_{n_0,j_2,i_2}^{\top}\partial_{\eta}m_{i_2}/J_0\right) \mid W_{i_1}, W_{i_2}, W_{j_2}\right] = 0,
$$

since $E[\delta_{n_0,j_1,i_1} | W_{i_1}, W_{i_2}, W_{j_2}] = 0$ due to part (a) of Assumption [3.2.](#page-0-0)

• If $j_1 = i_2$, then $i_2 \neq i_1$ (otherwise $j_1 \in \mathcal{I}_k$) and

$$
E\left[\left(\delta_{n_0,i_2,i_1}^{\top}\partial_{\eta}m_{i_1}/J_0\right)\left(\delta_{n_0,j_2,i_2}^{\top}\partial_{\eta}m_{i_2}/J_0\right) \mid W_{i_2}, X_{i_1}, W_{j_2}\right] = 0,
$$

since $E[\delta_{n_0,i_2,i_1} | W_{i_1}, X_{i_2}, W_{j_2}] = 0$ due to part (a) of Assumption [3.2.](#page-0-0)

• If $j_1 = j_2 = j$, then

$$
E\left[\left(\delta_{n_0,j,i_1}^{\top}\partial_{\eta}m_{i_1}/J_0\right)\left(\delta_{n_0,j,i_2}^{\top}\partial_{\eta}m_{i_2}/J_0\right) \mid X_j, W_{i_1}, W_{i_2}\right] = 0,
$$

since $E[\delta_{n_0,j,i_1} | X_j, W_{i_1}, W_{i_2}] = 0$ due to part (a) of Assumption [3.2.](#page-0-0)

Therefore,

$$
I_{1,2} = n^{-1} \sum_{i_1=1}^n \sum_{i_2=1}^n E\left[\left((\Delta_{i_1}^l)^{\top} \partial_{\eta} m_{i_1} / J_0 \right) \left((\Delta_{i_2}^b)^{\top} \partial_{\eta} m_{i_2} / J_0 \right) \right]
$$

= 0,

which completes the proof of claim 2.

Claim 3: $I_3 = O(n^{-2\varphi_1})$. Algebra shows

$$
I_{3} = n^{-1} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} E\left[\left((\Delta_{i_{1}}^{b})^{\top} \partial_{\eta} m_{i_{1}} / J_{0} \right) \left((\Delta_{i_{2}}^{b})^{\top} \partial_{\eta} m_{i_{2}} / J_{0} \right) \right]
$$

\n
$$
= n^{-1} \sum_{k_{1},k_{2}=1}^{K} \sum_{i_{1} \in \mathcal{I}_{k_{1}}} \sum_{i_{2} \in \mathcal{I}_{k_{2}}} n_{0}^{-2\varphi_{2}} n_{0}^{-2} \sum_{j_{1} \notin \mathcal{I}_{k_{1}}} \sum_{j_{2} \notin \mathcal{I}_{k_{2}}} E\left[\left(b_{n_{0},j_{1},i_{1}}^{\top} \partial_{\eta} m_{i_{1}} / J_{0} \right) \left(b_{n_{0},j_{2},i_{2}}^{\top} \partial_{\eta} m_{i_{2}} / J_{0} \right) \right]
$$

\n
$$
\stackrel{(1)}{=} n^{-1} \sum_{k_{1}=1}^{K} \sum_{i_{1} \in \mathcal{I}_{k_{1}}} \sum_{i_{2} \notin \mathcal{I}_{k_{1}}} n_{0}^{-2\varphi_{2}} n_{0}^{-2} E\left[\left(b_{n_{0},i_{2},i_{1}}^{\top} \partial_{\eta} m_{i_{1}} / J_{0} \right) \left(b_{n_{0},i_{1},i_{2}}^{\top} \partial_{\eta} m_{i_{2}} / J_{0} \right) \right]
$$

\n
$$
+ n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}} n_{0}^{-2} \sum_{j \notin \mathcal{I}_{k}} E\left[\left(b_{n_{0},j,i}^{\top} \partial_{\eta} m_{i} / J_{0} \right) \left(b_{n_{0},j,i}^{\top} \partial_{\eta} m_{i} / J_{0} \right) \right]
$$

\n
$$
\stackrel{(2)}{=} n_{0}^{-1} E\left[\left(n_{0}^{-\varphi_{2}} b_{n_{0},j,i}^{\top} \partial_{\eta} m_{i} / J_{0} \right) \left(n_{0}^{-\varphi_{2}} b_{n_{0},j,i}^{\top}
$$

+
$$
n_0^{-1} E\left[(n_0^{-\varphi_2} b_{n_0,j,i}^\top \partial_\eta m_i / J_0)^2 \right]
$$

\n $\leq 2(p\tilde{C}_1/C_0^2) n_0^{-1} E\left[||n_0^{-\varphi_2} b_{n_0,j,i}||^2 \right]$
\n $\leq 2(p\tilde{C}_1/C_0^2) n_0^{-1} n_0^{1-2\varphi_1} \tau_{n_0}$
\n $\stackrel{(6)}{=} o(n^{-2\varphi_1}),$

where (1) uses the same argument to calculate I_1 , (2) holds since the random vectors $\{ (b_{n_0,i_2,i_1}^{\top} \partial_{\eta} m_{i_1}/J_0, b_{n_0,i_1,i_2}^{\top} \partial_{\eta} m_{i_2}/J_0) : i_1 \neq i_2 \}$ are identically distributed, (3) holds by Cauchy-Schwartz inequality, (4) holds by the inequalities $(E.9)$ and $(E.10)$ presented below where \tilde{C}_1 is a constant depending only on (C_0, C_1, M) , (5) holds by part (b.4) in Assumption [3.2,](#page-0-0) and (6) holds since $n/2 \le n_0 \le n$ and $\tau_{n_0} = o(1)$.

$$
E\left[\left(n_0^{-\varphi_2}b_{n_0,j,i}^\top \partial_\eta m_i/J_0\right)^2\right] \le (p\tilde{C}_1/C_0^2)E\left[||n_0^{-\varphi_2}b_{n_0,j,i}||^2\right] \tag{E.9}
$$

$$
E\left[\left(n_0^{-\varphi_2}b_{n_0,i,j}^\top \partial_\eta m_i/J_0\right)^2\right] \le (p\tilde{C}_1/C_0^2)E\left[||n_0^{-\varphi_2}b_{n_0,j,i}||^2\right] \tag{E.10}
$$

To verify [\(E.9\)](#page-17-0) consider the following derivation,

$$
E\left[\left(n_0^{-\varphi_2}b_{n_0,j,i}^\top \partial_\eta m_i/J_0\right)^2\right] \stackrel{(1)}{=} E\left[n_0^{-\varphi_2}b_{n_0,j,i}^\top E\left[(\partial_\eta m_i/J_0)(\partial_\eta m_i/J_0)^\top \mid X_j, X_i\right] n_0^{-\varphi_2}b_{n_0,j,i}\right] \n\stackrel{(2)}{\leq} (1/C_0^2)E\left[n_0^{-\varphi_2}b_{n_0,j,i}^\top E\left[(\partial_\eta m_i)(\partial_\eta m_i)^\top \mid X_i\right] n_0^{-\varphi_2}b_{n_0,j,i}\right] \n\stackrel{(3)}{\leq} p(\tilde{C}_1/C_0^2)E\left[||n_0^{-\varphi_2}b_{n_0,j,i}||^2\right]
$$

where (1) holds by LIE and since $b_{n_0,j,i}$ is non-random conditional on X_j and X_i , (2) holds by part (a) of Assumption [3.1](#page-0-0) and independence between X_i and X_j since $i \neq j$, and (3) holds by definition of euclidean norm and since $||E[(\partial_{\eta}m_i)(\partial_{\eta}m_i)^{\top} | X_i]||_{\infty} \leq$ $\tilde{C}_1 = C_1(1 + M^{1/4}/C_0)^2$ due to parts (d) in Assumption [3.1](#page-0-0) and $|\theta_0| \leq M^{1/4}/C_0$ (which holds by definition of θ_0 and parts (a) and (c) of Assumption [3.1\)](#page-0-0).

The verification of $(E.10)$ follows the same previous derivations but reverting the role of *i* and *j*. Lastly, it uses that $E\left[||n_0^{-\varphi_2}b_{n_0,i,j}||^2\right] = E\left[||n_0^{-\varphi_2}b_{n_0,j,i}||^2\right]$ since $b_{n_0,j,i}$ and $b_{n_0,i,j}$ have the same distribution for $i \neq j$.

Part 3: By Cauchy-Schwartz, parts 3 of Proposition [C.2,](#page-0-0) and part 2 of this

proposition,

$$
Cov(\mathcal{T}_n^{dml}, \mathcal{T}_{n,K}^l) \le ((G_{\delta}^l)^{1/2}(K/(K-1))^{\varphi_1} + o(1))^{1/2} (\sigma^2 \sigma_a^2 + \Lambda^2 + o(1))^{1/2} n^{-\varphi_1 - 1/2},
$$

 \Box

which implies the RHS is $O(n^{-\varphi_1-1/2})$, and this is $o(n^{-2\varphi_1})$ since $\varphi_1 < 1/2$.

E.6 Proof of Proposition [C.4](#page-0-0)

Proof. For $i \in \mathcal{I}_k$, denote $\Delta_i = \Delta_i^b + \Delta_i^l$, where

$$
\Delta_i^l = n_0^{-\varphi_1} n_0^{-1/2} \sum_{j \notin \mathcal{I}_k} \delta_{n_0, j, i} ,
$$

$$
\Delta_i^b = n_0^{-\varphi_2} n_0^{-1} \sum_{j \notin \mathcal{I}_k} b_{n_0, j, i} ,
$$

Here, $\delta_{n_0,j,i} = \delta_{n_0}(W_j, X_i)$ and $b_{n_0,j,i} = b_{n_0}(X_j, X_i)$, and δ_{n_0} and b_{n_0} are functions satisfying Assumption [3.2.](#page-0-0) Denote $H_i = \partial_{\eta}^2 m_i / (2J_0)$.

Part 1: Consider the following decomposition using the definition of $\mathcal{T}_{n,K}^{nl}$ in [\(3.12\)](#page-0-0),

$$
E[\mathcal{T}_{n,K}^{nl}] = n^{-1/2} \sum_{i=1}^{n} E\left[\Delta_i^\top H_i \Delta_i\right]
$$

$$
= I_1 + 2I_2 + I_3
$$

where

$$
I_1 = n^{-1/2} \sum_{i=1}^n E\left[(\Delta_i^l)^\top H_i \Delta_i^l \right]
$$

$$
I_2 = n^{-1/2} \sum_{i=1}^n E\left[(\Delta_i^b)^\top H_i \Delta_i^l \right]
$$

$$
I_3 = n^{-1/2} \sum_{i=1}^n E\left[(\Delta_i^b)^\top H_i \Delta_i^b \right]
$$

In what follows, I show $I_1 = n^{1/2} n_0^{-2\varphi_1} F_\delta + o(n^{1/2-2\varphi_1}), I_2 = 0, I_3 = n^{1/2} n_0^{-2\varphi_2} F_b +$ $o(n^{1/2-2\varphi_1})$, which is sufficient to complete the proof of Part 1 since $n_0 = ((K 1)/K$)n.

Claim 1: $I_1 = n^{1/2} n_0^{-2\varphi_1} F_\delta + o(n^{1/2 - 2\varphi_1})$. Consider the following derivations,

$$
E[(\Delta_i^l)^{\top} H_i \Delta_i^l] \stackrel{(1)}{=} n_0^{-2\varphi_1} n_0^{-1} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} E[(\delta_{n_0, j_1, i})^{\top} H_i(\delta_{n_0, j_2, i})]
$$

$$
\stackrel{(2)}{=} n_0^{-2\varphi_1} n_0^{-1} \sum_{j \notin \mathcal{I}_k} E[(\delta_{n_0, j, i})^{\top} H_i(\delta_{n_0, j, i})]
$$

$$
\stackrel{(3)}{=} n_0^{-2\varphi_1} E[(\delta_{n_0, j, i})^{\top} H_i(\delta_{n_0, j, i})],
$$

where (1) holds by definition of Δ_i^l , and (2) and (3) hold since $\{\delta_{n_0,j,i} : j \notin \mathcal{I}_k\}$ are zero mean i.i.d. random vectors conditional on W_i due to part (a) of Assumption [3.2](#page-0-0) (here I use that $i \in \mathcal{I}_k$). Therefore,

$$
I_1 = n^{-1/2} \sum_{i=1}^n E\left[(\Delta_i^l)^\top H_i(\Delta_i^l) \right]
$$

= $n^{1/2} n_0^{-2\varphi_1} E[(\delta_{n_0,j,i})^\top H_i(\delta_{n_0,j,i})]$

$$
\stackrel{(1)}{=} n^{1/2} n_0^{-2\varphi_1} F_\delta + o(n^{1/2-2\varphi_1})
$$

where (1) holds by definition of F_{δ} in [\(3.3\)](#page-0-0), Assumption [A.1,](#page-0-0) and because $n/2 \leq n_0 \leq$ n. This completes the proof of claim 1.

Claim 2: $I_2 = 0$. Consider the following derivations,

$$
E[(\Delta_i^b)^\top H_i(\Delta_i^l)] \stackrel{(1)}{=} n_0^{-\varphi_2-\varphi_1} n_0^{-3/2} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} E[(b_{n_0,j_1,i})^\top H_i(\delta_{n_0,j_2,i})]
$$

$$
\stackrel{(2)}{=} 0
$$

where (1) holds by definition of Δ_i^b and Δ_i^l , and (2) holds since

$$
E[(b_{n_0,j_1,i})^{\top}(\partial_{\eta}^2 m_i/(2J_0))(\delta_{n_0,j_2,i}) | X_{j_2}, X_{j_1}, W_i] = 0
$$

due to part (a) of Assumption [3.2](#page-0-0) ($E[\delta_{n_0,j_2,i} | X_{j_2}, W_i] = 0$). Therefore,

$$
I_2 = n^{-1/2} \sum_{i=1}^n E\left[(\Delta_i^b)^{\top} (\partial_{\eta}^2 m_i / (2J_0))(\Delta_i^l) \right]
$$

which completes the proof of claim 2.

Claim 3: $I_3 = n^{1/2} n_0^{-2\varphi_2} F_b + o(n^{1/2-2\varphi_1})$. Denote $\tilde{b}_{n_0,i} = E[b_{n_0,j,i} | X_i]$ for $j \neq i$. Consider the following derivations,

$$
E[(\Delta_i^b)^{\top} H_i(\Delta_i^l)] \stackrel{(1)}{=} n_0^{-2\varphi_2} n_0^{-2} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} E[(b_{n_0,j_1,i})^{\top} H_i(b_{n_0,j_2,i})]
$$

\n
$$
\stackrel{(2)}{=} n_0^{-2\varphi_2} n_0^{-2} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} E[(b_{n_0,j_1,i} - \tilde{b}_{n_0,i})^{\top} H_i(b_{n_0,j_2,i} - \tilde{b}_{n_0,i})]
$$

\n
$$
+ n_0^{-2\varphi_2} n_0^{-2} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} E[(b_{n_0,j_1,i} - \tilde{b}_{n_0,i})^{\top} H_i(\tilde{b}_{n_0,i})]
$$

\n
$$
+ n_0^{-2\varphi_2} n_0^{-2} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} E[(\tilde{b}_{n_0,i})^{\top} H_i(b_{n_0,j_2,i} - \tilde{b}_{n_0,i})]
$$

\n
$$
+ n_0^{-2\varphi_2} n_0^{-2} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} E[(\tilde{b}_{n_0,i})^{\top} H_i(\tilde{b}_{n_0,i})]
$$

\n
$$
\stackrel{(3)}{=} n_0^{-2\varphi_2} n_0^{-1} E[(b_{n_0,j,i} - \tilde{b}_{n_0,i})^{\top} H_i(b_{n_0,j,i} - \tilde{b}_{n_0,i})]
$$

\n
$$
+ n_0^{-2\varphi_2} E[(\tilde{b}_{n_0,i})^{\top} H_i(\tilde{b}_{n_0,i})]
$$

where (1) holds by definition of Δ_i^b , (2) holds by adding and subtracting $\tilde{b}_{n_0,i}$, and (3) holds since $\{b_{n_0,j,i} - \tilde{b}_{n_0,i} : j \notin \mathcal{I}_k\}$ are zero mean i.i.d. random vectors conditional on W_i , which implies $E[(\tilde{b}_{n_0,i})^\top H_i(b_{n_0,j,i}-\tilde{b}_{n_0,i}) \mid W_i]=0$. Therefore,

$$
I_3 = n^{-1/2} \sum_{i=1}^n E\left[(\Delta_i^b)^{\top} H_i(\Delta_i^b) \right]
$$

\n
$$
= n^{1/2} n_0^{-1} n_0^{-2\varphi_2} E[(b_{n_0,j,i} - \tilde{b}_{n_0,i})^{\top} H_i(b_{n_0,j,i} - \tilde{b}_{n_0,i})] + n^{1/2} n_0^{-2\varphi_2} E[(\tilde{b}_{n_0,i})^{\top} H_i(\tilde{b}_{n_0,i})]
$$

\n
$$
\stackrel{(1)}{=} o(n^{1/2 - 2\varphi_1}) + n^{1/2} n_0^{-2\varphi_2} E[(\tilde{b}_{n_0,i})^{\top} H_i(\tilde{b}_{n_0,i})]
$$

\n
$$
\stackrel{(2)}{=} o(n^{1/2 - 2\varphi_1}) + n^{1/2} n_0^{-2\varphi_2} F_b + o(n^{1/2 - 2\varphi_2})
$$

\n
$$
\stackrel{(3)}{=} n^{1/2} n_0^{-2\varphi_2} F_b + o(n^{1/2 - 2\varphi_1})
$$

where (1) holds by [\(E.11\)](#page-20-0) presented below and since $n/2 \leq n_0 \leq n$, (2) holds by definition of F_b in [\(3.4\)](#page-0-0) and Assumption [A.1,](#page-0-0) and (3) since $\varphi_1 \leq \varphi_2$ and $n/2 \leq n_0 \leq n$.

$$
n_0^{-2\varphi_2} E[(b_{n_0,j,i} - \tilde{b}_{n_0,i})^\top H_i(b_{n_0,j,i} - \tilde{b}_{n_0,i})] = o(n^{1-2\varphi_1}).
$$
 (E.11)

To verify $(E.11)$ consider the following derivations,

$$
|n_0^{-2\varphi_2} E[(b_{n_0,j,i} - \tilde{b}_{n_0,i})^\top H_i(b_{n_0,j,i} - \tilde{b}_{n_0,i})]| \overset{(1)}{\leq} n_0^{-2\varphi_2} (2C_0)^{-1} E[|(b_{n_0,j,i} - \tilde{b}_{n_0,i})^\top \partial_{\eta}^2 m_i(b_{n_0,j,i} - \tilde{b}_{n_0,i})|]
$$

\n
$$
\overset{(2)}{\leq} (2C_0)^{-1} (p\tilde{C}_2) E[||n_0^{-\varphi_2} b_{n_0,j,i} - n_0^{-\varphi_2} \tilde{b}_{n_0,i}||^2]
$$

\n
$$
\overset{(3)}{\leq} 2(2C_0)^{-1} (p\tilde{C}_2) \left(E[||n_0^{-\varphi_2} b_{n_0,j,i}||^2] + E[||n_0^{-\varphi_2} \tilde{b}_{n_0,i}||^2] \right)
$$

\n
$$
\overset{(4)}{\leq} (p\tilde{C}_2/C_0) \left(n_0^{1-2\varphi_1} \tau_{n_0} + n_0^{-2\varphi_2} M_1^{1/2} \right)
$$

\n
$$
\overset{(5)}{=} o(n^{1-2\varphi_1}),
$$

where (1) holds by triangular inequality and part (a) of Assumption [3.1,](#page-0-0) (2) holds by definition of euclidean norm and since $||E[\partial_{\eta}^2 m_i | X_i]||_{\infty} \leq \tilde{C}_2 = C_2(1 + M^{1/4}/C_0)$ due to part (e) of Assumption [3.1](#page-0-0) and $|\theta_0| \leq M^{1/4}/C_0$ (which holds by definition of θ_0 and parts (a) and (c) of Assumption [3.1\)](#page-0-0), (3) holds by standard properties of euclidean norm, (4) holds by parts (b.3) and (b.4) of Assumption [3.2](#page-0-0) with $\tau_{n_0} = o(1)$, and (5) holds since $\varphi_1 \leq \varphi_2$ and $n/2 \leq n_0 \leq n$.

Part 2: Consider the following decomposition,

$$
\mathcal{T}_{n,K}^{nl} - E[\mathcal{T}_{n,K}^{nl}] = I_{l,l} + 2I_{l,b} + I_{b,b}
$$

where

$$
I_{l,l} = n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_k} n_0^{-2\varphi_1 - 1} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} \left(\delta_{n_0, j_1, i}^\top H_i \delta_{n_0, j_2, i} - E[\delta_{n_0, j_1, i}^\top H_i \delta_{n_0, j_2, i}] \right)
$$

\n
$$
I_{l,b} = n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_k} n_0^{-\varphi_1 - \varphi_2 - 3/2} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} \left(\delta_{n_0, j_1, i}^\top H_i b_{n_0, j_2, i} - E[\delta_{n_0, j_1, i}^\top H_i b_{n_0, j_2, i}] \right)
$$

\n
$$
I_{b,b} = n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_k} n_0^{-2\varphi_2 - 2} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} \left(b_{n_0, j_1, i}^\top H_i b_{n_0, j_2, i} - E[b_{n_0, j_1, i}^\top H_i b_{n_0, j_2, i}] \right)
$$

which implies

$$
Var[\mathcal{T}_{n,K}^{nl}] = E\left[(I_{l,l} + 2I_{l,b} + I_{b,b})^2 \right]
$$

= $E[I_{l,l}^2] + E[I_{b,b}^2] + 4E[I_{l,b}^2] + 2E[I_{l,l}I_{b,b}] + 4E[(I_{l,l} + I_{b,b})I_{l,b}]$

In what follows, I show $E[I_{l,l}^2] = G_{\delta}(K^2 - 3K + 3)(K - 1)^{-2}n_0^{1-4\varphi_1} + o(n^{-\zeta}), E[I_{b,b}^2] =$ $o(n^{-\zeta})$, and $E[I_{l,b}^2] = o(n^{-\zeta})$, which is sufficient to complete the proof of Part 2 since $n_0 = ((K-1)/K)n$ and by Cauchy-Schwartz it holds $E[I_{l,l}I_{b,b}] = o(n^{-\zeta})$, and $E[(I_{l,l} + I_{b,b})I_{l,b}] = o(n^{-\zeta}).$

Claim 1: $E[I_{l,l}^2] = G_{\delta}(K^2 - 3K + 3)(K - 1)^{-2}n_0^{1-4\varphi_1} + o(n^{-\zeta})$. Consider the following notation

$$
\Gamma_{j_1,j_2,i}^{l,l} = \left(\delta_{n_0,j_1,i}^{\top} H_i \delta_{n_0,j_2,i} - E[\delta_{n_0,j_1,i}^{\top} H_i \delta_{n_0,j_2,i}] \right) .
$$

Note that $E[\Gamma_{j_1,j_2,i}^{l,l}] = 0$ by construction, and $j_1 \neq j_2$ implies

$$
E[\delta_{n_0,j_1,i}^{\top} H_i \delta_{n_0,j_2,i}] = 0 \text{ and } \Gamma_{j_1,j_2,i}^{l,l} = \delta_{n_0,j_1,i}^{\top} H_i \delta_{n_0,j_2,i}.
$$

Therefore, $E[\Gamma_{j_1,j_2,i}^{l,l} | W_i, W_{j_1}, X_{j_2}] = 0$ and $E[\Gamma_{j_1,j_2,i}^{l,l} | W_i, W_{j_2}, X_{j_1}] = 0$ when $j_1 \neq j_2$ due to part (a) of Assumption [3.2.](#page-0-0) Furthermore,

$$
\left| E\left[\left(\Gamma_{j_1, j_2, i_1}^{l, l} \right) \left(\Gamma_{j_3, j_4, i_2}^{l, l} \right) \right] \right| \le (p\tilde{C}_2/C_0)^2 n_0^{1 - 2\varphi_1} M_1 , \qquad (E.12)
$$

which follows by Cauchy-Schwartz, part (e) of Assumption [3.1,](#page-0-0) and part (b.2) of Assumption [3.2,](#page-0-0) with $\tilde{C}_2 = C_2(1 + M^{1/4}/C_0)$.

Using the previous notation, $I_{l,l}$ can be written as follows

$$
I_{l,l} = n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_k} n_0^{-2\varphi_1 - 1} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} \Gamma_{j_1, j_2, i}^{l,l}
$$
(E.13)

and $E[I_{l,l}^2]$ can be decompose in three terms

$$
E[I_{l,l}^{2}] = E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}-1} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2},i}^{l,l}\right)^{2}\right]
$$

\n
$$
= E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}-1} \sum_{j \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2}}^{l,l} + n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}-1} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2},i}^{l,l} I\{j_{1} \neq j_{2}\}\right)^{2}\right]
$$

\n
$$
= I_{1} + I_{2} + 2I_{3} ,
$$

 $\overline{1}$

where

$$
I_{1} = E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}-1} \sum_{j \notin \mathcal{I}_{k}} \Gamma_{j,j,i}^{l,l}\right)^{2}\right]
$$

\n
$$
I_{2} = E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}-1} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2},i}^{l,l} I\{j_{1} \neq j_{2}\}\right)^{2}\right]
$$

\n
$$
I_{3} = E\left[\left(n^{-1/2} \sum_{k_{1}=1}^{K} \sum_{i_{1} \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}-1} \sum_{j_{1} \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2},i_{1}}^{l,l}\right) \left(n^{-1/2} \sum_{k_{2}=1}^{K} \sum_{i_{2} \in \mathcal{I}_{k_{2}}} n_{0}^{-2\varphi_{1}-1} \sum_{j_{3} \notin \mathcal{I}_{k_{2}}} \sum_{j_{4} \notin \mathcal{I}_{k_{2}}} \Gamma_{j_{3},j_{4},i_{2}}^{l,l} I\{j_{3} \neq j_{4}\}\right]
$$

In what follows, I show that $I_1 = o(n^{-\zeta}), I_2 = G_{\delta}(K^2 - 3K + 3)(K - 1)^{-2}n_0^{1-4\varphi_1} +$ $o(n^{-\zeta})$, and $I_3 = o(n^{-\zeta})$, which is sufficient to complete the proof of Claim 1.

Claim 1.1 $I_1 = o(n^{-\zeta})$. Consider the following expansion

$$
I_1 = n^{-1} n_0^{-4\varphi_1 - 2} \sum_{k_1=1}^K \sum_{i_1 \in \mathcal{I}_{k_1}} \sum_{j_1 \notin \mathcal{I}_{k_1}} \sum_{k_2=1}^K \sum_{i_2 \in \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_{k_2}} E\left[\left(\Gamma_{j_1, j_1, i_1}^{l,l} \right) \left(\Gamma_{j_2, j_2, i_2}^{l,l} \right) \right]
$$

= $n^{-1} n_0^{-4\varphi_1 - 2} \sum_{(i_1, i_2, j_1, i_2) \in \mathcal{E}} E\left[\left(\Gamma_{j_1, j_1, i_1}^{l,l} \right) \left(\Gamma_{j_2, j_2, i_2}^{l,l} \right) \right],$

where $\mathcal{E} = \{(i_1, i_2, j_1, j_2) \in [n]^4 : i_1 \in \mathcal{I}_{k_1}, i_2 \in \mathcal{I}_{k_2}, j_1 \notin \mathcal{I}_{k_1}, j_2 \notin \mathcal{I}_{k_2}, k_1 \in [K], k_2 \in \mathcal{I}_{k_1}, j_2 \notin \mathcal{I}_{k_2}, k_1 \in [K], k_2 \in \mathcal{I}_{k_2} \}$ [K]}, with [n] denoting $\{1, \ldots, n\}$. Let $\mathcal{E}_4 \subseteq [n]^4$ be the subset of indices with distinct entries. (e.g., $i_1 \notin \{i_2, j_1, j_2\}, i_2 \notin \{j_1, j_2\}, j_1 \neq j_2$). Let $\mathcal{E}_{\leq 3} \subset [n]^4$ be the subset of indices with at most three distinct entries.

Now, take $(i_1, i_2, j_1, j_2) \in \mathcal{E} \cap \mathcal{E}_4$. It follows that

$$
E\left[\left(\Gamma_{j_1,j_1,i_1}^{l,l}\right)\left(\Gamma_{j_2,j_2,i_2}^{l,l}\right)\right] = E\left[\left(\Gamma_{j_1,j_1,i_1}^{l,l}\right)\right]E\left[\left(\Gamma_{j_2,j_2,i_2}^{l,l}\right)\right] = 0,
$$

due to independence and by definition of $\Gamma_{j_1,j_1,i_1}^{l,l}$.

Therefore,

$$
|I_1| = \left| n^{-1} n_0^{-4\varphi_1 - 2} \sum_{(i_1, i_2, j_1, i_2) \in \mathcal{E} \backslash \mathcal{E}_4} E\left[\left(\Gamma_{j_1, j_1, i_1}^{l, l} \right) \left(\Gamma_{j_2, j_2, i_2}^{l, l} \right) \right] \right|
$$

$$
\leq n^{-1} n_0^{-4\varphi_1 - 2} \sum_{(i_1, i_2, j_1, i_2) \in \mathcal{E}_{\leq 3}} \left| E\left[\left(\Gamma_{j_1, j_1, i_1}^{l,l} \right) \left(\Gamma_{j_2, j_2, i_2}^{l,l} \right) \right] \right|
$$
\n
$$
\leq n^{-1} n_0^{-4\varphi_1 - 2} \sum_{(i_1, i_2, j_1, i_2) \in \mathcal{E}_{\leq 3}} \left(p \tilde{C}_2 / C_0 \right)^2 n_0^{1 - 2\varphi_1} M_1
$$
\n
$$
\leq n^{-1} n_0^{-4\varphi_1 - 2} \times 3^4 n^3 \times \left(p \tilde{C}_2 / C_0 \right)^2 n_0^{1 - 2\varphi_1} M_1
$$
\n
$$
\stackrel{\text{(4)}}{=} O(n^{1 - 6\varphi_1}),
$$

 $\overline{}$ \vert

where (1) holds by triangular inequality and since $\mathcal{E} \backslash \mathcal{E}_4 \subset \mathcal{E}_{\leq 3}$, (2) holds by [\(E.12\)](#page-22-0), (3) holds since the number of elements of \mathcal{E}_3 is at most 3^4n^3 (for each 3-tuple $(a, b, c) \in [n]^3$ consider the functions from the positions $\{1, 2, 3, 4\}$ into the possible values $\{a, b, c\}$, the number of all these functions is 3^4 and there number of 3-tuple is n^3), and (4) hold since $n/2 \leq n \leq n$. Therefore, I_1 is $O(n^{1-6\varphi_1})$, which is $o(n^{-\zeta})$ since $6\varphi_1 - 1 > 4\varphi_1 - 1 \ge \zeta$. This completes the proof of Claim 1.1.

Claim 1.2: $I_2 = G_{\delta}(K^2 - 3K + 3)(K - 1)^{-2}n_0^{1-4\varphi_1} + o(n^{-\zeta})$. Consider the following expansion

$$
I_2 = n^{-1} n_0^{-4\varphi_1 - 2} \sum_{k_1=1}^K \sum_{i_1 \in \mathcal{I}_{k_1}} \sum_{j_1, j_2 \notin \mathcal{I}_{k_1}} \sum_{k_2=1}^K \sum_{i_2 \in \mathcal{I}_{k_2}} \sum_{j_3, j_4 \notin \mathcal{I}_{k_2}} E\left[\left(\Gamma_{j_1, j_2, i_1}^{l,l} I\{j_1 \neq j_2\} \right) \left(\Gamma_{j_3, j_4, i_2}^{l,l} I\{j_3 \neq j_4\} \right) \right] \right]
$$

= $n^{-1} n_0^{-4\varphi_1 - 2} \sum_{(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E}} E\left[\left(\Gamma_{j_1, j_2, i_1}^{l,l} \right) \left(\Gamma_{j_3, j_4, i_2}^{l,l} \right) \right],$

where $\mathcal{E} = \{(i_1, i_2, j_1, j_2, j_3, j_4) \in [n]^6 : i_1 \in \mathcal{I}_{k_1}, i_2 \in \mathcal{I}_{k_2}; j_1, j_2 \notin \mathcal{I}_{k_1}; j_3, j_4 \notin \mathcal{I}_{k_1}; j_1 \neq j_2 \}$ $j_2; j_3 \neq j_4; k_1, k_2 \in [K]$. Let $\mathcal{E}_6 \subseteq [n]^6$ be the subset of indices with distinct entries. Let $\mathcal{E}_5 \subseteq [n]^6$ be the subset of indices with exactly five distinct entries, meaning that two entries are identical while the remaining entries are distinct. Let $\mathcal{E}_4 \subseteq [n]^6$ be the subset of indices with exactly four distinct entries. Let $\mathcal{E}_{\leq 3} \subset [n]^6$ be the subset of indices with at most three distinct entries. Note that $[n]^{6} = \mathcal{E}_{\leq 3} \cup \mathcal{E}_{4} \cup \mathcal{E}_{5} \cup \mathcal{E}_{6}$.

Now, take $(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cap \mathcal{E}_6$. It follows that

$$
E\left[\left(\Gamma_{j_1,j_2,i_1}^{l,l}\right)\left(\Gamma_{j_3,j_4,i_2}^{l,l}\right)\right] = 0 ,\qquad (E.14)
$$

since $\Gamma^{l,l}_{j_1,j_2,i_1}$ and $\Gamma^{l,l}_{j_3,j_4,i_2}$ are independent zero mean random variables.

Now take $(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cap \mathcal{E}_5$. Without loss of generality, assume that j_1 is different than all the other indices (otherwise, this statement holds with j_2 or j_3 or j_4). Then,

$$
E\left[\left(\Gamma_{j_1,j_2,i_1}^{l,l}\right)\left(\Gamma_{j_3,j_4,i_2}^{l,l}\right)\right] \stackrel{(1)}{=} E\left[\left(\delta_{n_0,j_1,i_1}^{\top}H_{i_1}\delta_{n_0,j_2,i_1}\right)\left(\delta_{n_0,j_3,i_2}^{\top}H_{i_2}\delta_{n_0,j_4,i_2}\right)\right] \n\stackrel{(2)}{=} E\left[E\left[\delta_{n_0,j_1,i_1}^{\top}\mid W_{i_1}, W_{i_2}, W_{j_2}, W_{j_3}, W_{j_4}\right]\left(H_{i_1}\delta_{n_0,j_2,i_1}\right)\left(\delta_{n_0,j_3,i_2}^{\top}H_{i_2}\delta_{n_0,j_4,i_2}\right)\right] \n\stackrel{(3)}{=} 0
$$
\n(E.15)

where (1) holds by definition of $\Gamma_{j_1,j_2,i_1}^{l,l}$ and $\Gamma_{j_3,j_4,i_2}^{l,l}$ since $j_1 \neq j_2$ and $j_3 \neq j_4$, (2) holds by LIE, and (3) holds by part (a) of Assumption [3.2.](#page-0-0) Note that this argument can be used whenever one j_s is different than all the other indices, for some $s \in \{1, 2, 3, 4\}$.

Now take $(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cap \mathcal{E}_4$. Suppose $\{a, b, c, d\}$ are four different indices, then there are two possible distributions for the 6-tuples: (i) two pairs, e.g., (a, a, b, b, c, d) , or (ii) one triple, e.g., (a, a, a, b, c, d) . Notice that for 6-tuples in (ii), there exists one j_s different than all the other indices, for some $s \in \{1, 2, 3, 4\}$. In this case, $E\left[\left(\Gamma_{i_l}^{l,l}\right)\right]$ $_{\scriptscriptstyle{j_{1},j_{2},i_{1}}}^{l,l}\Big)\,\Big(\Gamma_{\scriptscriptstyle{j_{3}}}^{l,l}$ $\left[\begin{array}{c} l,l \\ j_3,j_4,i_2 \end{array}\right]$ equals zero due to the argument described above. Therefore, in what follows, I consider only 6-tuples in (i), specifically, the cases where j_s appears in a pair for all $s = 1, 2, 3, 4$.

• Case 1: $j_1 = j_3$, $j_2 = j_4$, and $i_1 \neq i_2$. Then,

$$
E\left[\left(\Gamma_{j_1,j_2,i_1}^{l,l}\right)\left(\Gamma_{j_3,j_4,i_2}^{l,l}\right)\right] = E\left[\left(\delta_{n_0,j_1,i_1}^{\top}H_{i_1}\delta_{n_0,j_2,i_1}\right)\left(\delta_{n_0,j_1,i_2}^{\top}H_{i_2}\delta_{n_0,j_2,i_2}\right)\right] \tag{E.16}
$$

To compute the number of indices $(i_1, i_2, j_1, j_2, j_1, j_2) \in \mathcal{E}$ in this case, recall that $i_1 \in \mathcal{I}_{k_1}$ and $i_2 \in \mathcal{I}_{k_2}$, therefore, there are two situations (i) $k_1 = k_2$ or (ii) $k_1 \neq k_2$. For the first situation, i_1 can take n values, i_2 can take $n_k - 1$ values (since it is different than i_1 but is in the same fold \mathcal{I}_k), and j_1 and j_2 can take n_0 and $n_0 - 1$ values (since they are different but not in \mathcal{I}_k). That is $n(n_k−1)n₀(n₀−1)$ combinations. For the second situation, $i₁$ can take n values, i_2 can take n_0 values, then j_1 and j_2 take values in all the data except into the two folds that contain i_1 and i_2 (since $j_1, j_2 \notin \mathcal{I}_{k_1}$ and $j_1 = j_3, j_2 = j_4 \notin \mathcal{I}_{k_2}$), that is $(n_0-n_k)(n_0-n_k-1)$. That is $n(n-n_k)(n_0-n_k)(n_0-n_k-1)$ combinations.

Therefore, the total number of indices is equal to

$$
nn_0^3\left(\frac{K^2 - 3K + 3}{(K - 1)^2} - 2n_0^{-1} + n_0^{-2}\right)
$$
 (E.17)

• Case 2: $j_1 = j_4$, $j_2 = j_3$, and $i_1 \neq i_2$. Then,

$$
E\left[\left(\Gamma_{j_1,j_2,i_1}^{l,l}\right)\left(\Gamma_{j_3,j_4,i_2}^{l,l}\right)\right] = E\left[\left(\delta_{n_0,j_1,i_1}^{\top}H_{i_1}\delta_{n_0,j_2,i_1}\right)\left(\delta_{n_0,j_1,i_2}^{\top}H_{i_2}\delta_{n_0,j_2,i_2}\right)\right].
$$

The number of indices $(i_1, i_2, j_1, j_2, j_1, j_2) \in \mathcal{E}$ in this case is exactly the same as in the previous case, which is presented in $(E.17)$.

Finally, note that

$$
\left| \sum_{(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cup \mathcal{E}_{\leq 3}} E\left[\left(\Gamma_{j_1, j_2, i_1}^{l, l} \right) \left(\Gamma_{j_3, j_4, i_2}^{l, l} \right) \right] \right| \leq 3^6 n^3 (p\tilde{C}_2/C_0) n_0^{1 - 2\varphi_1} M_1 , \quad (E.18)
$$

which follows by triangular inequality, $(E.12)$, and by using that the number of elements in $\mathcal{E}_{\leq 3}$ is lower or equal to 3^6n^3 (for each 3-tuple $(a, b, c) \in [n]^3$, consider the functions from the positions $\{1, 2, 3, 4, 5, 6\}$ into the possible values $\{a, b, c\}$, the number of all these functions is 3^4 , while the number of 3-tuple is n^3).

In what follows, I use the preliminary findings to calculate I_2 up to an error of size $o(n^{-\zeta}),$

$$
I_{2} = n^{-1} n_{0}^{-4\varphi_{1}-2} \sum_{(i_{1},i_{2},j_{1},j_{2},j_{3},j_{4}) \in \mathcal{E}} E\left[\left(\Gamma_{j_{1},j_{2},i_{1}}^{l,l}\right)\left(\Gamma_{j_{3},j_{4},i_{2}}^{l,l}\right)\right]
$$

\n
$$
\stackrel{(1)}{=} n^{-1} n_{0}^{-4\varphi_{1}-2} \sum_{(i_{1},i_{2},j_{1},j_{2},j_{3},j_{4}) \in \mathcal{E} \cap \mathcal{E}_{4}} E\left[\left(\Gamma_{j_{1},j_{2},i_{1}}^{l,l}\right)\left(\Gamma_{j_{3},j_{4},i_{2}}^{l,l}\right)\right]
$$

\n
$$
+ n^{-1} n_{0}^{-4\varphi_{1}-2} \sum_{(i_{1},i_{2},j_{1},j_{2},j_{3},j_{4}) \in \mathcal{E} \cup \mathcal{E}_{\leq 3}} E\left[\left(\Gamma_{j_{1},j_{2},i_{1}}^{l,l}\right)\left(\Gamma_{j_{3},j_{4},i_{2}}^{l,l}\right)\right]
$$

\n
$$
\stackrel{(2)}{=} n^{-1} n_{0}^{-4\varphi_{1}-2} \sum_{k_{1}=1}^{K} \sum_{(i_{1},i_{2},j_{1},j_{2},j_{3},j_{4}) \in \mathcal{E} \cap \mathcal{E}_{4}} E\left[\left(\Gamma_{j_{1},j_{2},i_{1}}^{l,l}\right)\left(\Gamma_{j_{3},j_{4},i_{2}}^{l,l}\right)\right] + O(n^{1-6\varphi_{1}})
$$

\n
$$
\stackrel{(3)}{=} n_{0}^{1-4\varphi_{1}} \left(\frac{K^{2}-3K+3}{(K-1)^{2}}-2n_{0}^{-1}+n_{0}^{-2}\right) 2E\left[\left(\delta_{n_{0},j_{1},i_{1}}^{\top}H_{i_{1}}\delta_{n_{0},j_{2},i_{1}}\right)\left(\delta_{n_{0},j_{1},i_{2}}^{\top}H_{i_{2}}\delta_{n_{0},j_{2},i_{2}}\right)\right] + O(n^{1-6\varphi_{1}})
$$

\n
$$
\stackrel{(4)}{=} n_{0}^{1-4\varphi_{1}} \left(\frac{K^{2}-3K+3}{(
$$

where (1) holds by the derivations in $(E.14)$ and $(E.15)$, (2) holds by $(E.18)$, (3) holds by $(E.16)$ that computes the expected value and $(E.17)$ that calculates the number of indices to consider, and (4) holds by definition of G_{δ} in [\(3.2\)](#page-0-0), Assump-tion [A.1,](#page-0-0) $n/2 \le n_0 \le n$, and since $6\varphi_1 - 1 > \zeta$. This completes the proof of Claim 1.2.

Claim 1.3: $I_3 = o(n^{-\zeta})$. First, claim 1.1 implies I_1 is $o(n^{-\zeta})$. Second, claim 1.2 implies I_2 is $O(n^{-\zeta})$ since $4\varphi_1 - 1 \ge \zeta$. Finally, then I_3 is $o(n^{-\zeta})$ due to Cauchy-Schwartz $(|I_3| \leq |I_1|^{1/2} |I_2|^{1/2})$. This completes the proof of Claim 1.3.

Claim 2: $E[I_{b,b}^2] = o(n^{-\zeta})$. Consider the following notation,

$$
\Gamma^{b,b}_{j_1,j_2,i} = b_{n_0,j_1,i}^\top H_i b_{n_0,j_2,i} - E[b_{n_0,j_1,i}^\top H_i b_{n_0,j_2,i}],
$$

where by construction $E[\Gamma^{b,b}_{j_1,j_2,i}] = 0$. Denote $\tilde{b}_{n_0,i} = E[b_{n_0,j,i} | X_i]$. Note that if $j_1 \neq j_2$, then

$$
\Gamma^{b,b}_{j_1,j_2,i} = b_{n_0,j_1,i}^{\top} H_i b_{n_0,j_2,i} - E[\tilde{b}_{n_0,i}^{\top} H_i \tilde{b}_{n_0,i}],
$$

Furthermore,

$$
n_0^{-4\varphi_2} E\left[|\Gamma_{j_1,j_1,i}^{b,b}|^2\right] \le (p\tilde{C}_2/C_0) n_0^{3(1-2\varphi_1)} \tau_{n_0},
$$
\n(E.19)

which follows by C-S, part (e) of Assumption [3.1,](#page-0-0) and part (b.4) of Assumption [3.2,](#page-0-0) with $\tilde{C}_2 = C_2(1 + M^{1/4}/C_0)$. And, if $j_1 \neq j_2$,

$$
n_0^{-4\varphi_2} E\left[|\Gamma_{j_1,j_2,i}^{b,b}|^2\right] \le (p\tilde{C}_2/C_0) n_0^{2(1-2\varphi_1)} \tau_{n_0},
$$
 (E.20)

which holds by C-S, part (e) of Assumption [3.1,](#page-0-0) and part $(b.1)$ of Assumption [3.2.](#page-0-0)

The previous notation can be used to rewrite $I_{b,b}$ as follows

$$
E[I_{b,b}^{2}] = E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}-2} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2},i}^{b,b}\right)^{2}\right]
$$

=
$$
E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}-2} \sum_{j \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2}}^{b,b} + n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}-2} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2},i}^{b,b} I\{j_{1} \neq j_{2}\}\right)^{2}\right]
$$

 $\overline{ }$

$$
= I_1 + I_2 + 2I_3
$$

where

$$
I_{1} = E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}-2} \sum_{j \notin \mathcal{I}_{k}} \Gamma_{j,j,i}^{b,b}\right)^{2}\right]
$$

\n
$$
I_{2} = E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}-2} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2},i}^{b,b} I\{j_{1} \neq j_{2}\}\right)^{2}\right]
$$

\n
$$
I_{3} = E\left[\left(n^{-1/2} \sum_{k_{1}=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}-2} \sum_{j_{1} \notin \mathcal{I}_{k_{1}}} \Gamma_{j_{1},j_{1},i_{1}}^{b,b}\right) \left(n^{-1/2} \sum_{k_{2}=1}^{K} \sum_{i_{2} \in \mathcal{I}_{k_{2}}} n_{0}^{-2\varphi_{2}-2} \sum_{j_{3} \notin \mathcal{I}_{k_{2}}} \sum_{j_{4} \notin \mathcal{I}_{k_{2}}} \Gamma_{j_{3},j_{4},i}^{b,b} I\{j_{3} \neq j_{4}\}\right)
$$

In what follows, I show that $I_1 = o(n^{-\zeta})$, $I_2 = o(n^{-\zeta})$, and $I_3 = o(n^{-\zeta})$, which is sufficient to complete the proof of Claim 2.

Claim 2.1: $I_1 = o(n^{-\zeta})$. Consider the following expansion,

$$
I_1 = n^{-1} n_0^{-4\varphi_2 - 4} \sum_{k_1=1}^K \sum_{k_2=1}^K \sum_{i_1 \in \mathcal{I}_{k_1}} \sum_{i_2 \in \mathcal{I}_{k_2}} \sum_{j_1 \notin \mathcal{I}_{k_1}} \sum_{j_2 \notin \mathcal{I}_{k_2}} E\left[\Gamma_{j_1,j_1,i_1}^{b,b} \Gamma_{j_2,j_2,i_2}^{b,b}\right]
$$

= $n^{-1} n_0^{-4\varphi_2 - 4} \sum_{(i_1,i_2,j_1,j_2) \in \mathcal{E}} E\left[\Gamma_{j_1,j_1,i_1}^{b,b} \Gamma_{j_2,j_2,i_2}^{b,b}\right],$

where $\mathcal{E} = \{(i_1, i_2, j_1, j_2) \in [n]^4 : i_1 \in \mathcal{I}_{k_1}, i_2 \in \mathcal{I}_{k_2}, j_1 \notin \mathcal{I}_{k_1}, j_2 \notin \mathcal{I}_{k_2}, k_1 \in [K], k_2 \in \mathcal{I}_{k_1}, j_2 \notin \mathcal{I}_{k_2}, k_1 \in [K], k_2 \in \mathcal{I}_{k_2} \}$ $[K]$, with $[n]$ denoting $\{1, \ldots, n\}$. Let $\mathcal{E}_4 \subseteq [n]^4$ be the subset of indices with distinct entries. Let $\mathcal{E}_{\leq 3} \subset [n]^4$ be the subset of indices with at most three distinct entries.

Now, take $(i_1, i_2, j_1, j_2) \in \mathcal{E} \cap \mathcal{E}_4$. It follows that

$$
E\left[\Gamma^{b,b}_{j_1,j_1,i_1}\Gamma^{b,b}_{j_2,j_2,i_2}\right] = 0 ,
$$

since $\Gamma^{b,b}_{j_1,j_1,i_1}$ and $\Gamma^{b,b}_{j_2,j_2,i_2}$ are zero mean independent random variables.

Now, take $(i_1, i_2, j_1, j_2) \in \mathcal{E} \cap \mathcal{E}_{\leq 3}$. Consider the following derivation,

$$
n_0^{-4\varphi_2} \left| E\left[\Gamma_{j_1,j_1,i_1}^{b,b} \Gamma_{j_2,j_2,i_2}^{b,b}\right] \right| \leq (p\tilde{C}_2/C_0) n_0^{3(1-2\varphi_1)} \tau_{n_0} ,
$$

which follows by C-S and $(E.19)$.

Therefore,

$$
\left| n^{-1} n_0^{-4\varphi_2 - 4} \sum_{(i_1, i_2, j_1, j_2) \in \mathcal{E} \cap \mathcal{E}_{\leq 3}} E\left[\Gamma_{j_1, j_1, i_1}^{b, b} \Gamma_{j_2, j_2, i_2}^{b, b}\right] \right| \leq n^{-1} n_0^{-4} 3^4 n^3 (p \tilde{C}_2 / C_0) n_0^{3(1 - 2\varphi_1)} \tau_{n_0},
$$

which uses that $\mathcal{E}_{\leq 3}$ has at most $3^4 n^3$ elements (as in the proof of claim 1.1).

Using these two preliminary results, it follows that

$$
I_1 = o(n^{1-6\varphi_1}),
$$

since $\tilde{\tau}_{n_0} = o(1)$ and $n/2 \leq n_0 \leq n$. This completes the proof of Claim 2.2 since $6\varphi_1 - 1 > \zeta$.

Claim 2.2: $I_2 = o(n^{-\zeta})$. Consider the following expansion,

$$
I_2 = n^{-1} n_0^{-4\varphi_2 - 4} \sum_{k_1=1}^K \sum_{i_1 \in \mathcal{I}_{k_1}} \sum_{k_2=1}^K \sum_{i_2 \in \mathcal{I}_{k_2}} \sum_{j_1, j_2 \notin \mathcal{I}_{k_1}} \sum_{j_3, j_4 \notin \mathcal{I}_{k_2}} E\left[\Gamma_{j_1, j_2, i_1}^{b, b} \Gamma_{j_3, j_4, i_2}^{b, b}\right] I\{j_1 \neq j_2\} I\{j_3 \neq j_4\}
$$

= $n^{-1} n_0^{-4\varphi_2 - 4} \sum_{(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E}} E\left[\Gamma_{j_1, j_2, i_1}^{b, b} \Gamma_{j_3, j_4, i_2}^{b, b}\right],$

where $\mathcal{E} = \{(i_1, i_2, j_1, j_2, j_3, j_4) \in [n]^6 : i_1 \in \mathcal{I}_{k_1}, i_2 \in \mathcal{I}_{k_2}; j_1, j_2 \notin \mathcal{I}_{k_1}; j_3, j_4 \notin \mathcal{I}_{k_1}; j_1 \neq j_2 \}$ $j_2; j_3 \neq j_4; k_1, k_2 \in [K]$. Let $\mathcal{E}_6 \subseteq [n]^6$ be the subset of indices with distinct entries. Let $\mathcal{E}_5 \subseteq [n]^6$ be the subset of indices with exactly five distinct entries, meaning that two entries are identical while the remaining entries are distinct. Let $\mathcal{E}_4 \subseteq [n]^6$ be the subset of indices with exactly four distinct entries. Let $\mathcal{E}_{\leq 3} \subset [n]^6$ be the subset of indices with at most three distinct entries. Note that $[n]^{6} = \mathcal{E}_{\leq 3} \cup \mathcal{E}_{4} \cup \mathcal{E}_{5} \cup \mathcal{E}_{6}$.

Note that for all $(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E}_6$, it follows $E\left[\Gamma_{j_1}^{b,b} \right]$ $_{j_1,j_2,i_1}^{b,b}\Gamma_{j_3,}^{b,b}$ $\left[\begin{smallmatrix} b,b \ j_3, j_4, i_2 \end{smallmatrix}\right] = 0 \, \, \text{since} \, \,$ $\Gamma^{b,b}_{i_1}$ $_{j_1,j_2,i_1}^{b,b}$ and $\Gamma_{j_3,j_4,i_2}^{b,b}$ are independent zero mean random variables.

Now, take $(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cap \mathcal{E}_5$. There are three possible cases:

• Case 1: $j_s = j_r$ for some $s \in \{1, 2\}$ and $r \in \{3, 4\}$. Since all the sub-cases are

similar, without loss of generality, take $(s, r) = (1, 3)$. It follows that

$$
n_0^{-2\varphi_2} \left| E\left[\Gamma_{j_1,j_2,i_1}^{b,b} \Gamma_{j_3,j_4,i_2}^{b,b}\right] \right| \stackrel{(1)}{\leq} \left| E\left[(n_0^{-\varphi_2} b_{n_0,j_1,i_1})^\top H_{i_1} \tilde{b}_{n_0,i_1} (n_0^{-\varphi_2} b_{n_0,j_1,i_1})^\top H_{i_2} \tilde{b}_{n_0,i_2} \right] \right|
$$

+
$$
n_0^{-2\varphi_2} \left| E\left[\tilde{b}_{n_0,i_1}^\top H_{i_1} \tilde{b}_{n_0,i_1}\right] E\left[\tilde{b}_{n_0,i_2}^\top H_{i_2} \tilde{b}_{n_0,i_2}\right] \right|
$$

$$
\stackrel{(2)}{\leq} \tilde{C} E\left[|(n_0^{-\varphi_2} b_{n_0,j_1,i_1})|^2 |\tilde{b}_{n_0,i_1}|^2 \right] + n_0^{-2\varphi_2} \tilde{C} M_1
$$

$$
\stackrel{(3)}{\leq} \tilde{C} E\left[E\left[|(n_0^{-\varphi_2} b_{n_0,j_1,i_1})|^2 | X_{i_1} \right]^2 \right]^{1/2} E\left[|\tilde{b}_{n_0,i_1}|^4 \right]^{1/2} + n_0^{-2\varphi_2} \tilde{C} M_1
$$

$$
\stackrel{(4)}{\leq} \tilde{C} n_0^{-1-2\varphi_1} \tau_{n_0} M_1^{1/2} + n_0^{-2\varphi_2} \tilde{C} M_1
$$

where (1) holds by triangular inequality, LIE and definition of $\Gamma_{j_1,j_2,i_1}^{b,b}$ and $\Gamma^{b,b}_{j_3,j_4,i_2}$ when $j_1 = j_3$ and $(i_1,i_2,j_1,j_2,j_3,j_4) \in \mathcal{E} \cap \mathcal{E}_5$, (2) holds by part (e) of Assumption [3.1](#page-0-0) with \tilde{C} as a function of (C_0, C_2, M, p) and part (b.3) of Assumption 3.2 with C-S, (3) holds by LIE and C-S, and (4) holds by parts $(b.1)$ and (b.3) of Assumption [3.2.](#page-0-0)

• Case 2: $j_s = i_2$ for some $s \in \{1, 2\}$ or $j_r = i_1$ for some $r \in \{3, 4\}$. Since all the sub-cases are similar, take $s = 1$. It follows that

$$
n_0^{-\varphi_2} \left| E\left[\Gamma_{j_1,j_2,i_1}^{b,b} \Gamma_{j_3,j_4,j_1}^{b,b}\right] \right| \stackrel{(1)}{\leq} \left| E\left[(n_0^{-\varphi_2} b_{n_0,j_1,i_1})^\top H_{i_1} \tilde{b}_{n_0,i_1} \tilde{b}_{n_0,j_1}^\top H_{j_1} \tilde{b}_{n_0,j_1} \right] \right|
$$

+ $n_0^{-\varphi_2} \left| E\left[\tilde{b}_{n_0,i_1}^\top H_{i_1} \tilde{b}_{n_0,i_1}\right] E\left[\tilde{b}_{n_0,j_1}^\top H_{j_1} \tilde{b}_{n_0,j_1}\right] \right|$
 $\stackrel{(2)}{\leq} \tilde{C} E\left[|n_0^{-\varphi_2} b_{n_0,j_1,i_1}|^4 \right]^{1/4} E\left[|\tilde{b}_{n_0,j_1}|^4 \right]^{3/4} + n_0^{-\varphi_2} \tilde{C} M_1$
 $\stackrel{(3)}{\leq} \tilde{C} n_0^{3(1-2\varphi_1)/4} \tau_{n_0}^{1/4} M_1^{3/4} + n_0^{-\varphi_2} \tilde{C} M_1$

where (1) holds by triangular inequality, LIE, and definition of $\Gamma_{j_1,j_2,i_1}^{b,b}$ and $\Gamma^{b,b}_{j_3,j_4,i_2}$ when $j_1 = i_2$ and $(i_1,i_2,j_1,j_2,j_3,j_4) \in \mathcal{E} \cap \mathcal{E}_5$; (2) holds by part (e) of Assumption [3.1](#page-0-0) with \tilde{C} as a function of (C_0, C_2, M, p) , C-S, and part (b.3) of Assumption [3.2](#page-0-0) with C-S; (3) holds by parts (b.3) and (b.4) of Assumption [3.2.](#page-0-0)

• Case 3: $i_1 = i_2$. It follows that

$$
\left| E \left[\Gamma_{j_1, j_2, i_1}^{b, b} \Gamma_{j_3, j_4, j_1}^{b, b} \right] \right| \stackrel{(1)}{\leq} \left| E \left[\tilde{b}_{n_0, i_1}^\top H_{i_1} \tilde{b}_{n_0, i_1} \tilde{b}_{n_0, i_1}^\top H_{i_1} \tilde{b}_{n_0, i_1} \right] \right|
$$

+
$$
\left| E \left[\tilde{b}_{n_0, i_1}^\top H_{i_1} \tilde{b}_{n_0, i_1} \right] E \left[\tilde{b}_{n_0, i_1}^\top H_{i_1} \tilde{b}_{n_0, i_1} \right] \right|
$$

$$
\stackrel{(2)}{\leq} 2\tilde{C}M_1
$$

where (1) holds by triangular inequality, LIE, and definition of $\Gamma_{j_1,j_2,i_1}^{b,b}$ and $\Gamma^{b,b}_{j_3,j_4,i_2}$ when $i_1 = i_2$ and $(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cap \mathcal{E}_5$; and (2) holds by part (e) of Assumption [3.1](#page-0-0) with \tilde{C} as a function of (C_0, C_2, M, p) , C-S, and part (b.3) of Assumption [3.2](#page-0-0) with C-S.

Therefore, for the indices on $\mathcal{E} \cap \mathcal{E}_5$, it follows that

$$
n^{-1}n_0^{-4\varphi_2 - 4} \sum_{(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cap \mathcal{E}_5} E\left[\Gamma_{j_1, j_2, i_1}^{b, b} \Gamma_{j_3, j_4, i_2}^{b, b}\right] \stackrel{(1)}{=} o(n^{1 - 2\varphi_1 - 2\varphi_2}) + o(n^{3/4 - 3\varphi_1/2 - 3\varphi_2}) + O(n^{-4\varphi_2})
$$
\n
$$
\stackrel{(2)}{=} o(n^{-\zeta}) \tag{E.21}
$$

where (1) holds since the number of elements of $\mathcal{E} \cap \mathcal{E}_5$ is lower than $5^6 n^5$ and the preliminary findings in cases 1, 2, and 3, and (2) holds since $2\varphi_1 + 2\varphi_2 - 1 > \varphi_1 + 1$ $\varphi_2-1/2\geq\zeta,\,3\varphi_1/2+3\varphi_2-3/4>\varphi_1+\varphi_2-1/2\geq\zeta,\,\text{and}\,\,4\varphi_2>4\varphi_1-1\geq\zeta.$

Now, take $(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cap \mathcal{E}_4$. There are three cases.

• Case 1: $j_1 = j_s$ and $j_2 = j_r$ for $\{r, s\} = \{3, 4\}$. Without loss of generality, consider $(s, r) = (3, 4)$. It follows

$$
n_{0}^{-4\varphi_{2}} \left| E\left[\Gamma_{j_{1},j_{2},i_{1}}^{b,b} \Gamma_{j_{1},j_{2},i_{2}}^{b,b}\right] \right|
$$

\n
$$
\leq |E\left[(n_{0}^{-\varphi_{2}}b_{n_{0},j_{1},i_{1}})^{\top}H_{i_{1}}(n_{0}^{-\varphi_{2}}b_{n_{0},j_{2},i_{1}})(n_{0}^{-\varphi_{2}}b_{n_{0},j_{1},i_{2}})^{\top}H_{i_{2}}(n_{0}^{-\varphi_{2}}b_{n_{0},j_{2},i_{2}})\right] |
$$

\n
$$
+ n_{0}^{-4\varphi_{2}} \left| E\left[\tilde{b}_{n_{0},i_{1}}^{\top}H_{i_{1}}\tilde{b}_{n_{0},i_{1}}\right] E\left[\tilde{b}_{n_{0},i_{2}}^{\top}H_{i_{2}}\tilde{b}_{n_{0},i_{2}}\right] \right|
$$

\n
$$
\leq \tilde{C}E\left[|n_{0}^{-\varphi_{2}}b_{n_{0},j_{1},i_{1}}|||n_{0}^{-\varphi_{2}}b_{n_{0},j_{2},i_{1}}||n_{0}^{-\varphi_{2}}b_{n_{0},j_{1},i_{2}}||n_{0}^{-\varphi_{2}}b_{n_{0},j_{2},i_{2}}||+ n_{0}^{-4\varphi_{2}}\tilde{C}M_{1}
$$

\n
$$
\stackrel{(3)}{=} \tilde{C}E\left[E\left[|n_{0}^{-\varphi_{2}}b_{n_{0},j_{1},i_{1}}|||n_{0}^{-\varphi_{2}}b_{n_{0},j_{1},i_{2}}||X_{i_{1}},X_{i_{2}}\right]E\left[|n_{0}^{-\varphi_{2}}b_{n_{0},j_{2},i_{1}}||n_{0}^{-\varphi_{2}}b_{n_{0},j_{2},i_{2}}||X_{i_{1}},X_{i_{2}}\right]\right]
$$

\n
$$
+ n_{0}^{-4\varphi_{2}}\tilde{C}M_{1}
$$

\n
$$
\leq \tilde{C}E\left[E\left[|n_{0}^{-\varphi_{2}}b_{n_{0},j_{1},i_{1}}||^{2} | X_{i_{1}}\right]E\left[|n
$$

where (1) holds by triangular inequality, LIE, and definition of $\Gamma_{j_1,j_2,i_1}^{b,b}$ and $\Gamma^{b,b}_{j_3,j_4,i_2}$ when $j_1 = j_3$, $j_2 = j_4$ and $(i_1,i_2,j_1,j_2,j_3,j_4) \in \mathcal{E} \cap \mathcal{E}_5$; (2) holds by part (e) of Assumption [3.1](#page-0-0) with \tilde{C} as a function of (C_0, C_2, M, p) , C-S, and part (b.3) of Assumption [3.2](#page-0-0) with C-S; (3) holds by LIE; (4) and (5) holds by C-S; and (6) holds by part (b.1) of Assumption [3.2.](#page-0-0)

• Case 2: $j_1 = j_s$ for $s \in \{3, 4\}$ and $j_2 = i_2$. Without loss of generality, $s = 3$. It follows

$$
n_0^{-3\varphi_2} \left| E\left[\Gamma_{j_1,j_2,i_1}^{b,b} \Gamma_{j_1,j_2,i_2}^{b,b}\right] \right| \stackrel{(1)}{\leq} \left| E\left[(n_0^{-\varphi_2} b_{n_0,j_1,i_1})^\top H_{i_1}(n_0^{-\varphi_2} b_{n_0,j_2,i_1})(n_0^{-\varphi_2} b_{n_0,j_1,j_2})^\top H_{j_2} \tilde{b}_{n_0,j_2}\right] \right|
$$

+ $n_0^{-3\varphi_2} \left| E\left[\tilde{b}_{n_0,i_1}^\top H_{i_1} \tilde{b}_{n_0,i_1}\right] E\left[\tilde{b}_{n_0,j_2}^\top H_{j_2} \tilde{b}_{n_0,j_2}\right] \right|$
 $\stackrel{(3)}{\leq} \tilde{C} n_0^{9(1-2\varphi_1)/4} \tau_{n_0}^{3/4} M_1^{1/4} + \tilde{C} n_0^{-3\varphi_2} M_1$

where (1) holds by triangular inequality, LIE, and definition of $\Gamma_{j_1,j_2,i_1}^{b,b}$ and $\Gamma^{b,b}_{j_3,j_4,i_2}$ when $j_1 = j_3$, $j_2 = i_2$ and $(i_1,i_2,j_1,j_2,j_3,j_4) \in \mathcal{E} \cap \mathcal{E}_5$; and (2) holds by C-S and parts (b.3) and (b.4) of Assumption [3.2.](#page-0-0)

• Case 3: $j_1 = j_s$ for $s \in \{3, 4\}$ and $i_1 = i_2$. Without loss of generality, consider $s = 3$. It follows that

$$
n_0^{-2\varphi_2} \left| E\left[\Gamma_{j_1,j_2,i_1}^{b,b} \Gamma_{j_1,j_4,i_1}^{b,b}\right] \right| \stackrel{(1)}{\leq} \left| E\left[(n_0^{-\varphi_2} b_{n_0,j_1,i_1})^\top H_{i_1} \tilde{b}_{n_0,i_1}(n_0^{-\varphi_2} b_{n_0,j_1,i_1})^\top H_{i_1} \tilde{b}_{n_0,i_1}\right] \right|
$$

+
$$
n_0^{-2\varphi_2} \left| E\left[\tilde{b}_{n_0,i_1}^\top H_{i_1} \tilde{b}_{n_0,i_1}\right] E\left[\tilde{b}_{n_0,i_1}^\top H_{i_1} \tilde{b}_{n_0,i_1}\right] \right|
$$

$$
\stackrel{(2)}{\leq} \tilde{C} n_0^{1-2\varphi_1} \tau_{n_0} M_1^{1/2} + n_0^{-2\varphi_2} \tilde{C} M_1
$$

where (1) holds by triangular inequality, LIE and definition of $\Gamma_{j_1,j_2,i_1}^{b,b}$ and $\Gamma^{b,b}_{j_3,j_4,i_2}$ when $j_1 = j_3$ and $i_1 = i_2$ and $(i_1,i_2,j_1,j_2,j_3,j_4) \in \mathcal{E} \cap \mathcal{E}_4$; and (2) holds by the same derivations presented in Case 1 when $(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cap \mathcal{E}_5$; therefore, it is omitted.

Therefore, for the indices on $\mathcal{E} \cap \mathcal{E}_4$, it follows that

$$
n^{-1}n_0^{-4\varphi_2 - 4} \sum_{(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cap \mathcal{E}_4} E\left[\Gamma_{j_1, j_2, i_1}^{b, b} \Gamma_{j_3, j_4, i_2}^{b, b}\right] \stackrel{(1)}{=} o(n^{1 - 4\varphi_1}) + o(n^{5/4 - 9\varphi_1/2 - \varphi_2}) + O(n^{-2\varphi_1 - 2\varphi_2})
$$
\n
$$
\stackrel{(2)}{=} o(n^{-\zeta}) \tag{E.22}
$$

where (1) holds since the number of elements of $\mathcal{E} \cap \mathcal{E}_4$ is lower than $4^6 n^4$ and the preliminary findings in cases 1, 2, and 3; and (2) holds since $4\varphi_1 - 1 \ge \zeta$, $9\varphi_1/2 +$ $\varphi_2 - 5/4 > \varphi_1 + \varphi_2 - 1/2 \ge \zeta$, and $2\varphi_1 + 2\varphi_2 > \varphi_1 + \varphi_2 - 1/2 \ge \zeta$.

Now, take $(i_1, i_2, j_1, j_2, j_3, j_4) \in \mathcal{E} \cap \mathcal{E}_{\leq 3}$. Similar to the proof of Claim 2.1 but using $(E.20)$ instead of $(E.19)$, it follows that

$$
\left| n^{-1} n_0^{-4\varphi_2 - 4} \sum_{(i_1, i_2, j_1, j_2) \in \mathcal{E} \cap \mathcal{E}_{\leq 3}} E\left[\Gamma_{j_1, j_1, i_1}^{b, b} \Gamma_{j_2, j_2, i_2}^{b, b}\right] \right| = o(n^{-\zeta}) \tag{E.23}
$$

Finally, using [\(E.21\)](#page-31-0), [\(E.22\)](#page-32-0), and [\(E.23\)](#page-33-0), it follows that $I_2 = o(n^{-\zeta})$. This completes the proof of Claim 2.2.

Claim 2.3: $I_3 = o(n^{-\zeta})$. This result is a consequence of C-S and Claims 2.1 and 2.2.

Claim 3: $E[I_{l,b}^2] = o(n^{-\zeta})$. Consider the following notation,

$$
\Gamma_{j_1,j_2,i}^{l,b} = \delta_{n_0,j_1,i}^{\top} H_i b_{n_0,j_2,i}
$$

where it holds $E[\Gamma_{j_1,j_2,i}^{l,b}]=0$ due to part (a) of Assumption [3.2.](#page-0-0)

Furthermore,

$$
n_0^{-2\varphi_2} E\left[|\Gamma_{j_1,j_2,i}^{l,b}|^2\right] \leq \tilde{C} n_0^{2(1-2\varphi_1)} \tau_{n_0}^{1/2} M_1^{1/2} , \qquad (E.24)
$$

which follows by C-S, part (e) of Assumption 3.1 , and parts $(b.2)$ and $(b.4)$ of As-sumption [3.2,](#page-0-0) with \tilde{C} function of (C_2, M, C_0, p) .

The previous notation can be used to rewrite $E[I_{l,b}^2]$ as follows

$$
= E\left[\left(n^{-1/2}\sum_{k=1}^{K}\sum_{i\in\mathcal{I}_{k}}n_{0}^{-\varphi_{1}-\varphi_{2}-3/2}\sum_{j_{1}\notin\mathcal{I}_{k}}\sum_{j_{2}\notin\mathcal{I}_{k}}\Gamma_{j_{1},j_{2},i}^{l,b}\right)^{2}\right]
$$

\n
$$
= E\left[\left(n^{-1/2}\sum_{k=1}^{K}\sum_{i\in\mathcal{I}_{k}}n_{0}^{-\varphi_{1}-\varphi_{2}-3/2}\sum_{j\notin\mathcal{I}_{k}}\Gamma_{j,i}^{l,b}+n^{-1/2}\sum_{k=1}^{K}\sum_{i\in\mathcal{I}_{k}}n_{0}^{-\varphi_{1}-\varphi_{2}-3/2}\sum_{j_{1},j_{2}\notin\mathcal{I}_{k}}\Gamma_{j_{1},j_{2},i}^{l,b}I\{j_{1}\neq j_{2}\}\right)^{2}\right]
$$

\n
$$
= I_{1} + I_{2} + 2I_{3}
$$

 $\frac{1}{2}$

where

$$
I_{1} = E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-\varphi_{1} - \varphi_{2} - 3/2} \sum_{j \notin \mathcal{I}_{k}} \Gamma_{j,j,i}^{l,b}\right)^{2}\right]
$$

\n
$$
I_{2} = E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-\varphi_{1} - \varphi_{2} - 3/2} \sum_{j_{1},j_{2} \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2},i}^{l,b} I\{j_{1} \neq j_{2}\}\right)^{2}\right]
$$

\n
$$
I_{3} = E\left[\left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-\varphi_{1} - \varphi_{2} - 3/2} \sum_{j \notin \mathcal{I}_{k}} \Gamma_{j,j,i}^{l,b}\right) \left(n^{-1/2} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-\varphi_{1} - \varphi_{2} - 3/2} \sum_{j_{1},j_{2} \notin \mathcal{I}_{k}} \Gamma_{j_{1},j_{2},i}^{l,b} I\{j_{1} \neq j_{2}\}\right)\right]
$$

In what follows, I show that $I_1 = o(n^{-\zeta})$, $I_2 = o(n^{-\zeta})$, and $I_3 = o(n^{-\zeta})$, which is sufficient to complete the proof of Claim 2.

Claim 3.1: $I_1 = o(n^{-\zeta})$. Consider the following expansion,

$$
I_1 = n^{-1} n_0^{-2\varphi_1 - 2\varphi_2 - 3} \sum_{k_1, k_2 = 1}^K \sum_{i_1 \in \mathcal{I}_{k_1}} \sum_{i_1 \in \mathcal{I}_{k_1}} \sum_{j_1 \notin \mathcal{I}_{k_1}} \sum_{j_2 \notin \mathcal{I}_{k_2}} E[\Gamma^{l,b}_{j_1, j_1, i_1} \Gamma^{l,b}_{j_2, j_2, i_2}] .
$$

Now, $E[\Gamma_{j_1,j_1,i_1}^{l,b} \Gamma_{j_2}^{l,b}]$ $\binom{l, b}{l_2, l_2, l_2}$ is calculated under the two possible cases based on the indices (i_1, j_1, i_2, j_2) .

- Case 1: (i_1, j_1) and (i_2, j_2) have no element in common. Then $E[\Gamma^{l,b}_{j_1,j_1,i_1}\Gamma^{l,b}_{j_2,j_2}]$ $_{j_{2},j_{2},i_{2}}^{l,b}$] is zero since $\Gamma_{j_1,j_1,i_1}^{l,b}$ and $\Gamma_{j_2,j_2,i_2}^{l,b}$ are independent zero mean random variables.
- Case 2: (i_1, j_1) and (i_2, j_2) have at least one element in common. In this case, there are at most 3^4n^3 possible indices. Moreover, due to $(E.24)$ and C-S, it follows

$$
|E[\Gamma_{j_1,j_1,i_1}^{l,b}\Gamma_{j_2,j_2,i_2}^{l,b}]|\leq \tilde{C}n_0^{3(1-2\varphi_1)/2}\tau_{n_0}^{1/2}n_0^{(1-2\varphi_1)}M_1^{1/2}.
$$

Therefore,

$$
|I_1| \le n^{-1} n_0^{-2\varphi_1 - 3} 3^4 n^3 \tilde{C} n_0^{2(1 - 2\varphi_1)} \tau_{n_0}^{1/2} M_1^{1/2}
$$

= $o(n^{1 - 6\varphi_1})$,

which is sufficient to conclude that I_1 is $o(n^{-\zeta})$ since $6\varphi_1 - 1 > 4\varphi_1 - 1 \ge \zeta$. This completes the proof of Claim 3.1.

Claim 3.2: $I_2 = o(n^{-\zeta})$. Consider the following expansion,

$$
I_2 = n^{-1} \sum_{k_1, k_2 = 1}^{K} \sum_{i_1 \in \mathcal{I}_{k_1}} \sum_{i_2 \in \mathcal{I}_{k_2}} n_0^{-2\varphi_1 - 2\varphi_2 - 3} \sum_{j_1, j_2 \notin \mathcal{I}_{k_1}} \sum_{j_3, j_4 \notin \mathcal{I}_{k_2}} E\left[\Gamma_{j_1, j_2, i_1}^{l, b} \Gamma_{j_3, j_4, i_2}^{l, b}\right] I\{j_1 \neq j_2\} I\{j_3 \neq j_4\}
$$

Now, $E\left[\Gamma_{i_1}^{l,b}\right]$ $_{j_1,j_2,i_1}^{l,b}\Gamma _{j_3}^{l,b}$ $\begin{bmatrix} a,b \\ j_3,j_4,i_2 \end{bmatrix}$ is calculated under four possible cases based on the indices.

- Case 1: all indices are different. Then , $E\left[\Gamma_{j_1}^{l,b_1}\right]$ $_{j_1,j_2,i_1}^{l,b}\Gamma _{j_3}^{l,b}$ $\begin{bmatrix} l, b \\ j_3, j_4, i_2 \end{bmatrix}$ equals zero since $\Gamma^{l,b}_{j_1}$ $_{j_1,j_1,i_1}^{l,b}$ and $\Gamma_{j_2,j_2,i_2}^{l,b}$ are independent zero mean random variables.
- Case 2: there are exactly five different indices. Then, consider the four different sub-cases:
	- $j_1 = j_3$, then

$$
\left| E\left[\Gamma_{j_1,j_2,i_1}^{l,b} \Gamma_{j_1,j_4,i_2}^{l,b} \right] \right| = \left| E\left[\delta_{n_0,j_1,i_1}^{\top} H_{i_1} \tilde{b}_{n_0,i_1} \delta_{n_0,j_1,i_2}^{\top} H_{i_2} \tilde{b}_{n_0,i_2} \right] \right|
$$

\n
$$
\leq \tilde{C} E\left[|\delta_{n_0,j_1,i_1}| |\tilde{b}_{n_0,i_1}| |\delta_{n_0,j_1,i_2}| |\tilde{b}_{n_0,i_2}| \right]
$$

\n
$$
\leq \tilde{C} E\left[E\left[|\delta_{n_0,j_1,i_1}|^2 | X_{i_1} \right] |\tilde{b}_{n_0,i_1}|^2 \right]
$$

\n
$$
= O(1)
$$

which holds by C-S, LIE, and part $(b.1)$ and $(b.3)$ of Assumption [3.2.](#page-0-0) Since there are at most 5^6n^5 terms, it follows these terms contributed to I₂ with $O(n^{1-2\varphi_1-2\varphi_2})$ which is larger than $o(n^{-\zeta})$ since $2\varphi_1 + 2\varphi_1 - 1 >$ $\varphi_1 + \varphi_2 - 1/2 \ge \zeta$.

$$
- j_1 = j_4
$$
, then

$$
E\left[\Gamma_{j_1,j_2,i_1}^{l,b}\Gamma_{j_3,j_1,i_2}^{l,b}\right] = E\left[\delta_{n_0,j_1,i_1}^{\top}H_{i_1}b_{n_0,j_2,i_1}\delta_{n_0,j_3,i_2}^{\top}H_{i_2}b_{n_0,j_1,i_2}\right]
$$

\n
$$
= E[E[\delta_{n_0,j_1,i_1}^{\top} \mid X_{j_1}, W_{i_1}, W_{i_2}, W_{j_2}, W_{j_3}]H_{i_1}b_{n_0,j_2,i_1}\delta_{n_0,j_3,i_2}^{\top}H_{i_2}b_{n_0,j_1,i_2}]
$$

\n
$$
= 0,
$$

which holds due to part (a) of Assumption [3.2.](#page-0-0)

 $- j_1 = i_2$, then

$$
E\left[\Gamma_{j_1,j_2,i_1}^{l,b}\Gamma_{j_3,j_4,j_1}^{l,b}\right] = E\left[\delta_{n_0,j_1,i_1}^{\top}H_{i_1}b_{n_0,j_2,i_1}\delta_{n_0,j_3,j_1}^{\top}H_{j_1}b_{n_0,j_4,j_1}\right]
$$

\n
$$
= E\left[\delta_{n_0,j_1,i_1}^{\top}H_{i_1}b_{n_0,j_2,i_1}E\left[\delta_{n_0,j_3,j_1}^{\top}\mid W_{i_1}, W_{j_1}, W_{j_2}, W_{j_4}\right]H_{j_1}b_{n_0,j_4,j_1}\right]
$$

\n
$$
= 0.
$$

 $- i_1 = i_2$, then j_3 is different than all and the previous argument used for $j_1 = i_2$ applies and implies

$$
E\left[\Gamma_{j_1,j_2,i_1}^{l,b}\Gamma_{j_3,j_4,i_2}^{l,b}\right]=0
$$

- Case 3: there are exactly four different indices. Then
	- if j_2 or j_4 is different than all, then

$$
\left| E\left[\Gamma_{j_1,j_2,i_1}^{l,b} \Gamma_{j_3,j_4,i_2}^{l,b}\right] \right| = \left| E\left[\delta_{n_0,j_1,i_1}^{\top} H_{i_1} \tilde{b}_{n_0,i_1} \delta_{n_0,j_3,i_2}^{\top} H_{i_2} \tilde{b}_{n_0,i_2}\right] \right|
$$

= $\tilde{C} E\left[|\delta_{n_0,j_1,i_1}||\tilde{b}_{n_0,i_1}||\delta_{n_0,j_3,i_2}||\tilde{b}_{n_0,i_2}|\right]$
= $O(1)$

which holds by C-S, LIE, and parts (b.1) and (b.3) of Assumption [3.2.](#page-0-0) Since there are at most 4^6n^4 terms, it follows these terms, in this case, contributed to I_2 with $O(n^{-2\varphi_1-2\varphi_2})$, which is $o(n^{-\zeta})$ since $2\varphi_1 + 2\varphi_2 >$ $4\varphi_1-1$.

– if $j_1 = j_4$ and $j_2 = j_3$, then

$$
E\left[\Gamma_{j_1,j_2,i_1}^{l,b}\Gamma_{j_2,j_1,i_2}^{l,b}\right] = E\left[\delta_{n_0,j_1,i_1}^{\top}H_{i_1}b_{n_0,j_2,i_1}\delta_{n_0,j_2,i_2}^{\top}H_{i_2}b_{n_0,j_1,i_2}\right]
$$

\n
$$
= E[E[\delta_{n_0,j_1,i_1}^{\top} \mid X_{j_1}, W_{i_1}, W_{j_2}, W_{i_2}]H_{i_1}b_{n_0,j_2,i_1}\delta_{n_0,j_2,i_2}^{\top}H_{i_2}b_{n_0,j_1,i_2}]
$$

\n
$$
= 0,
$$

which follows by part (a) of Assumption [3.2.](#page-0-0)

– if $j_2 = j_3$ and $i_1 = j_4$, then

$$
E\left[\Gamma_{j_1,j_2,i_1}^{l,b}\Gamma_{j_2,i_1,i_2}^{l,b}\right] = E\left[\delta_{n_0,j_1,i_1}^{\top}H_{i_1}b_{n_0,j_2,i_1}\delta_{n_0,j_2,i_2}^{\top}H_{i_2}b_{n_0,i_1,i_2}\right]
$$

$$
= E[E[\delta_{n_0,j_1,i_1}^{\top} \mid X_{j_1}, W_{i_1}, W_{j_2}, W_{i_2}]H_{i_1}b_{n_0,j_2,i_1}\delta_{n_0,j_2,i_2}^{\top}H_{i_2}b_{n_0,i_1,i_2}]
$$

= 0,

which follows by part (a) of Assumption [3.2.](#page-0-0)

– if $j_1 = j_3$ and $j_2 = j_4$, then

$$
n_0^{-2\varphi_2} \left| E\left[\Gamma_{j_1,j_2,i_1}^{l,b} \Gamma_{j_1,j_2,i_2}^{l,b}\right] \right| = \left| E\left[\delta_{n_0,j_1,i_1}^{\top} H_{i_1} b_{n_0,j_2,i_1} \delta_{n_0,j_1,i_2}^{\top} H_{i_2} b_{n_0,j_2,i_2}\right] \right|
$$

\n
$$
\leq \tilde{C} E\left[E\left[|\delta_{n_0,j_1,i_1}|^2 \mid X_{i_1}\right] E\left[|n_0^{-\varphi_2} b_{n_0,j_2,i_1}|^2 \mid X_{i_1}\right] \right]
$$

\n
$$
\leq \tilde{C} E\left[E\left[|\delta_{n_0,j_1,i_1}|^2 \mid X_{i_1}\right]^2 \right]^{1/2} E\left[E\left[|n_0^{-\varphi_2} b_{n_0,j_2,i_1}|^2 \mid X_{i_1}\right]^2 \right]^{1/2}
$$

\n
$$
\leq \tilde{C} M_1^{1/2} n_0^{(1-2\varphi_1)} \tau_{n_0}^{1/2}
$$

which holds due to C-S, LIE, part (b.1) of Assumption [3.2.](#page-0-0) Since there are at most 4^6n^4 terms, it follows these terms contributed to I_2 with $o(n^{1-4\varphi_1}),$ which is $o(n^{-\zeta})$ since $4\varphi_1 - 1 \ge \zeta$.

-
$$
j_1 = i_2
$$
 and $j_2 = j_4$, then

$$
E\left[\Gamma_{j_1,j_2,i_1}^{l,b}\Gamma_{j_3,j_2,j_1}^{l,b}\right] = E\left[\delta_{n_0,j_1,i_1}^{\top}H_{i_1}b_{n_0,j_2,i_1}\delta_{n_0,j_3,j_1}^{\top}H_{j_1}b_{n_0,j_2,j_1}\right]
$$

\n
$$
= E[\delta_{n_0,j_1,i_1}^{\top}H_{i_1}b_{n_0,j_2,i_1}E[\delta_{n_0,j_3,j_1}^{\top} | X_{j_3}, W_{i_1}, W_{j_2}, W_{j_1}]H_{j_1}b_{n_0,j_2,j_1}]
$$

\n
$$
= 0,
$$

which holds due to part (a) of Assumption [3.2.](#page-0-0)

• Case 4: there are exactly three different indices. All the terms in this case contributed to I_2 with $o(n^{-\zeta})$ by a similar argument as Case 2 in the proof of Claim 3.1.

All the previous cases imply that $I_2 = o(n^{-\zeta})$, which completes the proof of Claim 3.2.

Claim 3.3: $I_3 = o(n^{-\zeta})$. This result is a consequence of C-S and Claims 3.1 and 3.2.

Part 3: It follows by Cauchy-Schwartz, using part 2 of this proposition and part 1 of Proposition [C.2.](#page-0-0)

Part 4: It follows by Cauchy-Schwartz, using part 2 of this proposition and part 2 of Proposition [C.3.](#page-0-0) \Box

E.7 Proof of Proposition [C.5](#page-0-0)

Proof. For $i \in \mathcal{I}_k$, denote $\Delta_i = \Delta_i^b + \Delta_i^l$, where

$$
\Delta_i^l = n_0^{-\varphi_1} n_0^{-1/2} \sum_{j \notin \mathcal{I}_k} \delta_{n_0, j, i} ,
$$

$$
\Delta_i^b = n_0^{-\varphi_2} n_0^{-1} \sum_{j \notin \mathcal{I}_k} b_{n_0, j, i} ,
$$

Here, $\delta_{n_0,j,i} = \delta_{n_0}(W_j, X_i)$ and $b_{n_0,j,i} = b_{n_0}(X_j, X_i)$, and δ_{n_0} and b_{n_0} are functions satisfying Assumption [3.2.](#page-0-0)

Part 1: Consider the following decomposition

$$
E[\mathcal{T}_{n}^{*}\mathcal{T}_{n,K}^{l}] = E\left[\left(n^{-1/2}\sum_{i_{1}=1}^{n}m_{i_{1}}/J_{0}\right)\left(n^{-1/2}\sum_{i_{2}=1}^{n}(\Delta_{i_{2}})^{\top}\partial_{\eta}m_{i_{2}}/J_{0}\right)\right]
$$

\n
$$
\stackrel{(1)}{=} n^{-1}\sum_{i_{1}=1}^{n}\sum_{i_{2}=1}^{n}E\left[(m_{i_{1}}/J_{0})\left((\Delta_{i_{2}}^{l} + \Delta_{i_{2}}^{b})^{\top}\partial_{\eta}m_{i_{2}}/J_{0}\right)\right]
$$

\n
$$
= n^{-1}\sum_{i_{1}=1}^{n}\sum_{k=1}^{K}\sum_{i_{2}\in\mathcal{I}_{k}}E\left[(m_{i_{1}}/J_{0})\left((\Delta_{i_{2}}^{l})^{\top}\partial_{\eta}m_{i_{2}}/J_{0}\right)\right] + E\left[(m_{i_{1}}/J_{0})\left((\Delta_{i_{2}}^{b})^{\top}\partial_{\eta}m_{i_{2}}/J_{0}\right)\right]
$$

\n
$$
= I_{1} + I_{2},
$$

where (1) holds since $\Delta_i = \Delta_i^l + \Delta_i^b$. Claim 1.1 below shows that $I_1 = 0$, while Claim 1.2 shows $I_2 = (G_b^l/2)n_0^{-\varphi_2} + o(n^{-\varphi_2}).$

Claim 1: $I_1 = 0$. To see this, consider the following derivations

$$
I_1 = n^{-1} \sum_{i_1=1}^n \sum_{k=1}^K \sum_{i_2 \in \mathcal{I}_k} E\left[(m_{i_1}/J_0) \left((\Delta_{i_2}^l)^\top \partial_{\eta} m_{i_2}/J_0 \right) \right]
$$

$$
\stackrel{\text{(1)}}{=} n^{-1} \sum_{i_1=1}^n \sum_{k=1}^K \sum_{i_2 \in \mathcal{I}_k} n_0^{-\varphi_1} n_0^{-1/2} \sum_{j \notin \mathcal{I}_k} E\left[(m_{i_1}/J_0) \delta_{n,j,i_2}^\top \partial_{\eta} m_{i_2}/J_0 \right]
$$

$$
\stackrel{(2)}{=} n^{-1} \sum_{i_1=1}^n \sum_{k=1}^K \sum_{i_2 \in \mathcal{I}_k} n_0^{-\varphi_1} n_0^{-1/2} \sum_{j \notin \mathcal{I}_k} E\left[(m_{i_1}/J_0) \, E\left[\delta_{n,j,i_2}^\top \mid W_{i_1}, W_{i_2} \right] \partial_\eta m_{i_2}/J_0 \right]
$$
\n
$$
\stackrel{(3)}{=} n^{-1} \sum_{k=1}^K \sum_{i_2 \in \mathcal{I}_k} n_0^{-\varphi_1} n_0^{-1/2} \sum_{j \notin \mathcal{I}_k} E\left[(m_j/J_0) \, \delta_{n,j,i_2}^\top E\left[\partial_\eta m_{i_2}/J_0 \mid X_{i_2}, W_j \right] \right]
$$
\n
$$
\stackrel{(4)}{=} 0
$$

where (1) holds by definition of Δ_i^l , (2) holds by the law of iterative expectations, (3) holds since $E\left[\delta_{n,j,i_2}^{\top} \mid W_{i_1}, W_{i_2}\right] = 0$ when $i_1 \neq j$ due to part (a) of Assumption [3.2](#page-0-0) and by the law of iterative expectations, and (4) holds by the Neyman orthogonality condition implied by part (b) of Assumption [3.1.](#page-0-0)

Claim 2: $I_2 = (G_b^l/2)n_0^{-\varphi_2} + o(n^{-\varphi_2})$. To see this, consider the following derivations

$$
I_{2} = n^{-1} \sum_{i_{1}=1}^{n} \sum_{k=1}^{K} \sum_{i_{2} \in I_{k}} E\left[(m_{i_{1}}/J_{0}) \left((\Delta_{i_{2}}^{b})^{\top} \partial_{\eta} m_{i_{2}}/J_{0} \right) \right]
$$

\n
$$
\stackrel{(1)}{=} n^{-1} \sum_{i_{1}=1}^{n} \sum_{k=1}^{K} \sum_{i_{2} \in I_{k}} n_{0}^{-\varphi_{2}} n_{0}^{-1} \sum_{j \notin I_{k}} E\left[(m_{i_{1}}/J_{0}) b_{n_{0},j,i_{2}}^{\top} \partial_{\eta} m_{i_{2}}/J_{0} \right]
$$

\n
$$
\stackrel{(2)}{=} n^{-1} \sum_{i_{1}=1}^{n} \sum_{k=1}^{K} \sum_{i_{2} \in I_{k}} n_{0}^{-\varphi_{2}} n_{0}^{-1} \sum_{j \notin I_{k}} E\left[(m_{i_{1}}/J_{0}) b_{n_{0},j,i_{2}}^{\top} E\left[\partial_{\eta} m_{i_{2}}/J_{0} \mid X_{i_{2}}, W_{i_{1}}, X_{j} \right] \right]
$$

\n
$$
\stackrel{(3)}{=} n^{-1} \sum_{k=1}^{K} \sum_{i_{2} \in I_{k}} n_{0}^{-\varphi_{2}} n_{0}^{-1} \sum_{j \notin I_{k}} E\left[(m_{i_{2}}/J_{0}) E\left[b_{n_{0},j,i_{2}}^{\top} \mid W_{i_{2}} \right] \partial_{\eta} m_{i_{2}}/J_{0} \right]
$$

\n
$$
\stackrel{(4)}{=} n_{0}^{-\varphi_{2}} E\left[(m_{i_{2}}/J_{0}) \tilde{b}_{n_{0}}(X_{i_{2}}) \partial_{\eta} m_{i_{2}}/J_{0} \right]
$$

\n
$$
\stackrel{(4)}{=} n_{0}^{-\varphi_{2}} (G_{b}^{l}/2) + o(n_{0}^{-\varphi_{2}}),
$$

where (1) holds by definition of Δ_i^b , (2) holds by the law of iterative expectations, (3) holds since $E[\partial_{\eta}m_{i_2}/J_0 | X_{i_2}, W_{i_1}, X_j] = 0$ when $i_1 \neq i_2$ due to the Neyman orthogonality condition implied by part (b) of Assumption [3.1](#page-0-0) and the law of iterative expectations, (4) holds by definitions of $\tilde{b}_{n_0,i} = E[b_{n_0,j,i} | X_i]$ which is equal to $E[b_{n_0,j,i} | W_i]$, and (5) holds by definition of G_b^l in [\(A-7\)](#page-0-0) and Assumption [A.1.](#page-0-0)

Part 2: Consider the following decomposition,

$$
E[\mathcal{T}_n^* \mathcal{T}_{n,K}^{nl}] = E\left[\left(n^{-1/2} \sum_{i_1=1}^n m_{i_1} / J_0 \right) \left(n^{-1/2} \sum_{i_2=1}^n (\Delta_{i_2})^\top H_{i_2} (\Delta_{i_2}) \right) \right]
$$

= $I_1 + 2I_2 + I_3$

where

$$
I_1 = E\left[\left(n^{-1/2} \sum_{i_1=1}^n m_{i_1} / J_0 \right) \left(n^{-1/2} \sum_{i_2=1}^n (\Delta_{i_2}^l)^\top H_{i_2} (\Delta_{i_2}^l) \right) \right]
$$

\n
$$
I_2 = E\left[\left(n^{-1/2} \sum_{i_1=1}^n m_{i_1} / J_0 \right) \left(n^{-1/2} \sum_{i_2=1}^n (\Delta_{i_2}^l)^\top H_{i_2} (\Delta_{i_2}^b) \right) \right]
$$

\n
$$
I_3 = E\left[\left(n^{-1/2} \sum_{i_1=1}^n m_{i_1} / J_0 \right) \left(n^{-1/2} \sum_{i_2=1}^n (\Delta_{i_2}^b)^\top H_{i_2} (\Delta_{i_2}^b) \right) \right]
$$

In what follows, I show that $I_1 = o(n^{-\zeta})$, $I_2 = (G_b/2)n_0^{1/2-\varphi_1-\varphi_2} + o(n^{-\zeta})$, and $I_3 = o(n^{-\zeta}).$

Claim 1: $I_1 = o(n^{-\zeta})$. Consider the following derivations,

$$
I_{1} \stackrel{(1)}{=} n^{-1} \sum_{i_{1}=1}^{n} \sum_{k=1}^{K} \sum_{i_{2} \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}} n_{0}^{-1} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} E\left[(m_{i_{1}}/J_{0}) \left((\delta_{n,j_{1},i_{2}})^{\top} H_{i_{2}}(\delta_{n,j_{2},i_{2}}) \right) \right]
$$
\n
$$
\stackrel{(2)}{=} n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}} n_{0}^{-1} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} E\left[(m_{i}/J_{0}) \left(\delta_{n,j_{1},i} \right)^{\top} H_{i}(\delta_{n,j_{2},i}) \right]
$$
\n
$$
+ n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}} n_{0}^{-1} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} E\left[(m_{j_{1}}/J_{0}) \left(\delta_{n,j_{1},i} \right)^{\top} H_{i}(\delta_{n,j_{2},i}) \right]
$$
\n
$$
+ n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}} n_{0}^{-1} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} E\left[(m_{j_{2}}/J_{0}) \left(\delta_{n,j_{1},i} \right)^{\top} H_{i}(\delta_{n,j_{2},i}) \right]
$$
\n
$$
\stackrel{(3)}{=} n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{1}} n_{0}^{-1} \sum_{j \notin \mathcal{I}_{k}} E\left[(m_{i}/J_{0}) \left(\delta_{n,j,i} \right)^{\top} H_{i}(\delta_{n,j,i}) \right]
$$
\n
$$
+ 2n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k
$$

$$
= n_0^{-2\varphi_1} E \left[(m_i / J_0) (\delta_{n,j,i})^\top H_i(\delta_{n,j,i}) \right] + 2 n_0^{-2\varphi_1} E \left[(m_j / J_0) (\delta_{n,j,i})^\top H_i(\delta_{n,j,i}) \right]
$$

$$
\stackrel{(4)}{=} O(n^{-2\varphi_1})
$$

where (1) holds by definition of Δ_i^l , (2) holds since $i_1 \notin \{i_2, j_1, j_2\}$ implies

$$
E [(m_{i_1}/J_0) ((\delta_{n,j_1,i_2})^{\top} H_{i_2}(\delta_{n,j_2,i_2}))] = 0,
$$

which follows since m_{i_1} is a zero mean random variable independent of W_{i_2} , W_{j_1} and W_{j_2} , (3) holds since $j_1 \neq j_2$ implies

$$
E [(m_i/J_0) (\delta_{n,j_1,i})^\top H_i(\delta_{n,j_2,i})] = 0
$$

\n
$$
E [(m_{j_1}/J_0) (\delta_{n,j_1,i})^\top H_i(\delta_{n,j_2,i})] = 0
$$

\n
$$
E [(m_{j_2}/J_0) (\delta_{n,j_1,i})^\top H_i(\delta_{n,j_2,i})] = 0,
$$

which follows by the law of iterative expectations and noting $E[\delta_{n,j_2,i} | W_i, W_{j_1}] = 0$ and $E[\delta_{n,j_1,i} | W_i, W_{j_2}] = 0$ (due to part (a) of Assumption [3.2\)](#page-0-0), and (4) holds by Holder's inequality, part (e) of Assumption [3.1,](#page-0-0) and part (a) of Assumption [3.2.](#page-0-0)

Claim 2: $I_2 = (G_b/2)n_0^{1/2-\varphi_1-\varphi_2} + o(n^{-\zeta})$. Consider the following derivations,

$$
I_{2} \stackrel{(1)}{=} n^{-1} \sum_{i_{1}=1}^{n} \sum_{k=1}^{K} \sum_{i_{2} \in \mathcal{I}_{k}} n_{0}^{-\varphi_{1}-\varphi_{2}} n_{0}^{-3/2} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} E\left[(m_{i_{1}}/J_{0}) \left((\delta_{n,j_{1},i_{2}})^{\top} H_{i_{2}}(b_{n_{0},j_{2},i_{2}}) \right) \right]
$$
\n
$$
\stackrel{(2)}{=} n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-\varphi_{1}-\varphi_{2}-3/2} \sum_{j_{1},j_{2} \notin \mathcal{I}_{k}} E\left[(m_{i}/J_{0}) \left(\delta_{n,j_{1},i} \right)^{\top} H_{i}(b_{n_{0},j_{2},i}) \right]
$$
\n
$$
+ n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-\varphi_{1}-\varphi_{2}-3/2} \sum_{j_{1},j_{2} \notin \mathcal{I}_{k}} E\left[(m_{j_{1}}/J_{0}) \left(\delta_{n,j_{1},i} \right)^{\top} H_{i}(b_{n_{0},j_{2},i}) \right] I\{j_{1} \neq j_{2}\}
$$
\n
$$
+ n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-\varphi_{1}-\varphi_{2}-3/2} \sum_{j_{1},j_{2} \notin \mathcal{I}_{k}} E\left[(m_{j_{2}}/J_{0}) \left(\delta_{n,j_{1},i} \right)^{\top} H_{i}(b_{n_{0},j_{2},i}) \right] I\{j_{1} \neq j_{2}\}
$$
\n
$$
+ n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-\varphi_{1}-\varphi_{2}-3/2} \sum_{j \notin \mathcal{I}_{k}} E\left[(m_{j}/J_{0}) \left(\delta_{n,j,i} \right)^{\top} H_{i}(b_{n_{0},j,i}) \right]
$$
\n
$$
\stackrel{(3)}{=} n^{-1} \sum_{k=1}^{
$$

$$
+ n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_k} n_0^{-\varphi_1 - \varphi_2 - 3/2} \sum_{j_1, j_2 \notin \mathcal{I}_k} E\left[(m_{j_1}/J_0) (\delta_{n, j_1, i})^\top H_i(\tilde{b}_{n_0, i}) \right] I\{j_1 \neq j_2\} + n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_k} n_0^{-\varphi_1 - \varphi_2 - 3/2} \sum_{j \notin \mathcal{I}_k} E\left[(m_j/J_0) (\delta_{n, j, i})^\top H_i(b_{n_0, j, i}) \right] \n\stackrel{(4)}{=} n_0^{-\varphi_1 - \varphi_2 + 1/2} E\left[(m_{j_1}/J_0) (\delta_{n, j_1, i})^\top H_i(\tilde{b}_{n_0, i}) \right] - n_0^{-\varphi_1 - \varphi_2 - 1/2} E\left[(m_{j_1}/J_0) (\delta_{n, j_1, i})^\top H_i(\tilde{b}_{n_0, i}) \right] + n_0^{-\varphi_1 - 1/2} E\left[(m_j/J_0) (\delta_{n, j, i})^\top H_i(n_0^{-\varphi_2} b_{n_0, j, i}) \right] \n\stackrel{(5)}{=} (G_b/2) n_0^{1/2 - \varphi_1 - \varphi_2} + o(n^{-\zeta}),
$$

where (1) holds by definition of $\Delta_{1,i}^l$ and $\Delta_{1,i}^b$, (2) holds since $i_1 \notin \{i_2, j_1, j_2\}$ implies

$$
E\left[(m_{i_1}/J_0) \left((\delta_{n,j_1,i_2})^{\top} H_{i_2}(b_{n_0,j_2,i_2}) \right) \right]
$$

by using that m_{i_1} is zero mean and independent of W_{i_2} , W_{j_1} , and W_{j_2} , (3) holds by definition of $\tilde{b}_{n_0,i} = E[b_{n_0,j,i} | X_i]$, and since $j_1 \neq j_2$ and the law of iterative expectations implies

$$
(m_{\ell}/J_0) E[(\delta_{n,j_1,i})^{\top} | W_i, W_{j_2}] H_{i_2}(b_{n_0,j_2,i}) = 0
$$

for $\ell = i, j_2$ by using part (a) of Assumption [3.2,](#page-0-0) (4) holds by the law of the iterative expectations,

$$
(m_i/J_0) E[(\delta_{n,j,i})^\top | W_i, X_j] H_i(b_{n_0,j,i}) = 0,
$$

and by parts (a) of Assumption [3.2,](#page-0-0) and (5) holds by definition of G_b in $(A-6)$ and Assumption [A.1](#page-0-0) and because

$$
n_0^{-\varphi_1 - 1/2} E\left[(m_j / J_0) (\delta_{n,j,i})^\top H_i (n_0^{-\varphi_2} b_{n_0,j,i}) \right]
$$

\n
$$
\le C n_0^{-\varphi_1 - 1/2} E[|m_j / J_0|^2]^{1/2} E[||\delta_{n,j,i}||^4]^{1/4} E[||n_0^{-\varphi_2} b_{n_0,j,i}||^4]
$$

\n
$$
= O(n^{-\varphi_1 - 1/2}) \times O(1) \times O(n_0^{1/4 - \varphi_1/2}) \times o(n_0^{3/4 - 3\varphi_1/2})
$$

\n
$$
= o(n^{1/2 - 3\varphi_1})
$$

where the inequality uses part (d) of Assumption [3.1](#page-0-0) and Cauchy-Schwartz inequality, and the equalities follows by part (b) of Assumption [3.2.](#page-0-0) The proof of the claim is completed since $\zeta < 1/2 - 3\varphi_1$ whenever $\varphi_1 < 1/2.$

Claim 3: $I_3 = o(n^{-\zeta})$. Consider the following derivations,

$$
I_{4} \stackrel{(1)}{=} n^{-1} \sum_{i_{1}=1}^{n} \sum_{k=1}^{K} \sum_{i_{2} \in \mathcal{I}_{k}} n_{0}^{-2 \varphi_{2}} n_{0}^{-2} \sum_{j_{1} \notin \mathcal{I}_{k}} \sum_{j_{2} \notin \mathcal{I}_{k}} E\left[(m_{i_{1}}/J_{0}) \left((b_{n_{0},j_{1},i_{2}})^{\top} H_{i_{2}}(b_{n_{0},j_{2},i_{2}}) \right) \right]
$$
\n
$$
\stackrel{(2)}{=} n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}-2} \sum_{j_{1},j_{2} \notin \mathcal{I}_{k}} E\left[(m_{i}/J_{0}) \left(b_{n_{0},j_{1},i} \right)^{\top} H_{i} (b_{n_{0},j_{2},i}) \right]
$$
\n
$$
+ n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}-2} \sum_{j_{1},j_{2} \notin \mathcal{I}_{k}} E\left[(m_{j_{1}}/J_{0}) \left(b_{n_{0},j_{1},i} \right)^{\top} H_{i} (b_{n_{0},j_{2},i}) \right] I\{j_{1} \neq j_{2}\}
$$
\n
$$
+ n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}-2} \sum_{j_{1},j_{2} \notin \mathcal{I}_{k}} E\left[(m_{j}/J_{0}) \left(b_{n_{0},j_{1},i} \right)^{\top} H_{i} (b_{n_{0},j_{2},i}) \right] I\{j_{1} \neq j_{2}\}
$$
\n
$$
+ n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} n_{0}^{-2\varphi_{2}-2} \sum_{j_{1},j_{2} \notin \mathcal{I}_{k}} E\left[(m_{j}/J_{0}) \left(b_{n_{0},j_{1}} \right)^{\top} H_{i} (b_{n_{0},j_{1})} \right]
$$
\n
$$
\stackrel{(3)}{=} n^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{I
$$

where (1) holds by definition of $\Delta_{1,i}^b$, (2) holds since $i_1 \notin \{j_1, j_2, i_2\}$ implies

$$
E\left[(m_{i_1}/J_0) \left((b_{n,j_1,i_2})^\top (\partial_\eta^2 m_{i_2}/(2J_0)) (b_{n,j_2,i_2}) \right) \right] = 0
$$

by using that m_{i_1} is zero mean and independent of W_{i_2} , W_{j_1} , and W_{j_2} ; (3) holds by the law of iterative expectations; (4) holds by parts (b) and (c) of Assumption [3.2,](#page-0-0) parts (c) and (e) of Assumption [3.1,](#page-0-0) part (b.1) of Assumption [3.2,](#page-0-0) and Holder's inequality; and (5) holds since $\zeta < 1/2 - 3\varphi_1$ and $\zeta < 2\varphi_2$ (because $\varphi_1 < 1/2$ and $\varphi_1 \le \varphi_2$). \Box

E.8 Proof of Lemma [C.1](#page-0-0)

Proof. It is sufficient to show the result for the case when δ_{n_0} and b_{n_0} are realvalued functions since for any $x = (x_1, \ldots, x_p) \in \mathbb{R}^p$ it holds $||x||^4 = \left(\sum_{\ell=1}^p x_\ell^2\right)^2 \le$ $p\sum_{\ell=1}^p |x_\ell|^4$. In the proof, I use that $E[(\sum_{\ell \notin \mathcal{I}_k} Z_\ell)^4] \leq n_0 E[Z_\ell^4] + 3n_0^2 E[Z_\ell^2]^2$, which holds for zero mean i.i.d. random variables Z_{ℓ} .

Part 1: Fix $i \in \mathcal{I}_k$ and denote $Z_\ell = \delta_{n_0}(W_\ell, X_i)$ for any $\ell \notin \mathcal{I}_k$. Conditional on X_i , it holds that $\{Z_{\ell} : \ell \notin \mathcal{I}_k\}$ is a zero mean i.i.d. sequence of random variables due to part (a) of Assumption [3.2.](#page-0-0) Therefore,

$$
E\left[|n_0^{-1/2}\sum_{\ell \notin \mathcal{I}_k} n_0^{-\varphi_1} Z_{\ell}|^4 \mid X_i\right] \le n_0^{-2-4\varphi_1} \left(n_0 E[Z_{\ell}^4 \mid X_i] + 3n_0^2 E[Z_{\ell}^2 \mid X_i]^2\right)
$$

Using the previous inequality and the law of iterative expectations, it follows

$$
E\left[|n_0^{-1/2}\sum_{\ell \notin \mathcal{I}_k} n_0^{-\varphi_1} Z_{\ell}|^4\right] \le n_0^{-4\varphi_1} \left(n_0^{-1} E[Z_{\ell}^4] + 3E[E[Z_{\ell}^2 | X_i]^2]\right)
$$

$$
\stackrel{(1)}{\le} n_0^{-4\varphi_1} \left(n_0^{-2\varphi_1} M_1 + 3M_1\right) ,
$$

where (1) holds by parts (b.1) and (b.2) of Assumption [3.2,](#page-0-0) and the definition of Z_{ℓ} . Taking $C \geq 4M_1$ completes the proof of part 1.

Part 2: Fix $i \in \mathcal{I}_k$ and denote $Z_\ell = n_0^{-\varphi_2}(b_{n_0}(X_\ell, X_i) - \tilde{b}_{n_0}(X_i))$ for any $\ell \notin \mathcal{I}_k$, where $\tilde{b}_{n_0}(X_i) = E[b_{n_0}(X_{\ell}, X_i) | X_i].$ As in part 1, $\{Z_{\ell} : \ell \notin \mathcal{I}\}\)$ conditional on X_i are zero mean i.i.d. random variables. Therefore,

$$
E\left[|n_0^{-1}\sum_{\ell \notin \mathcal{I}_k} (Z_{\ell} + n_0^{-\varphi_2} \tilde{b}_{n_0}(X_i))|^4\right] \stackrel{(1)}{\leq} 2^3 E\left[|n_0^{-1}\sum_{\ell \notin \mathcal{I}_k} Z_{\ell}|^4\right] + 2^3 E\left[|n_0^{-1}\sum_{\ell \notin \mathcal{I}_k} n_0^{-\varphi_2} \tilde{b}_{n_0}(X_i)|^4\right]
$$

$$
\leq 8n_0^{-2} \left(n_0^{-1} E[Z_\ell^4] + 3E[E[Z_\ell^2 | X_i]^2] \right) + 8n_0^{-4\varphi_2} E[|\tilde{b}_{n_0}(X_i)|^4]
$$

\n
$$
\leq 8n_0^{-6\varphi_1} \tau_{n_0} + 24n_0^{-4\varphi_1} \tau_{n_0} + 8n_0^{-4\varphi_2} M_1
$$

where (1) holds by Loeve's inequality $(Davidson (1994, Theorem 9.28)), (2) holds$ $(Davidson (1994, Theorem 9.28)), (2) holds$ $(Davidson (1994, Theorem 9.28)), (2) holds$ by the same arguments as in part 1, and (3) holds by part $(b.1)$, $(b.3)$ and $(b.4)$ of Assumption [3.2.](#page-0-0) Taking $C \geq 32 + 8M_1$ completes the proof of part 2. \Box

E.9 Proof of Lemma [C.2](#page-0-0)

Proof. For $i \in \mathcal{I}_k$, denote $\Delta_i = \Delta_i^b + \Delta_i^l$, where

$$
\Delta_i^l = n_0^{-\varphi_1} n_0^{-1/2} \sum_{j \notin \mathcal{I}_k} \delta_{n_0, j, i} ,
$$

$$
\Delta_i^b = n_0^{-\varphi_2} n_0^{-1} \sum_{j \notin \mathcal{I}_k} b_{n_0, j, i} ,
$$

Here, $\delta_{n_0,j,i} = \delta_{n_0}(W_j, X_i)$ and $b_{n_0,j,i} = b_{n_0}(X_j, X_i)$, and δ_{n_0} and b_{n_0} are functions satisfying Assumption [3.2.](#page-0-0) In what follows, the results are proved for any given sequence K that diverges to infinity as n diverges to infinity, which is sufficient to guarantee the results of this lemma.

Part 1: Using Assumption [3.2,](#page-0-0) it follows

$$
n^{-1} \sum_{i=1}^{n} (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta} \psi_i^z = I_1 + I_2 + I_3 ,
$$

where

$$
I_1 = n^{-1} \sum_{i=1}^n (\Delta_i^l)^\top \partial_\eta \psi_i^z
$$

\n
$$
I_2 = n^{-1} \sum_{i=1}^n (\Delta_i^b)^\top \partial_\eta \psi_i^z
$$

\n
$$
I_3 = n^{-1} n_0^{-2 \min{\{\varphi_1, \varphi_2\}}} \sum_{i=1}^n \hat{R}_1(X_i)^\top \partial_\eta \psi_i^z
$$

and $n_0 = ((K - 1)/K)n$.

Claim 1: $I_1 = O_p(n^{-1/2 - \min\{\varphi_1, \varphi_2\}})$. I first show that $E[I_1] = 0$ (claim 1.1). I then show that $E[I_1^2] = O(n^{-1-2\min\{\varphi_1,\varphi_2\}})$ (claim 1.2), which is sufficient to conclude the claim.

Claim 1.1: $E[I_1] = 0$. Consider the following derivations,

$$
E[I_1] = n^{-1} \sum_{i=1}^n E[(\Delta_i^l)^{\top} \partial_{\eta} \psi_i^z]
$$

= $n^{-1} \sum_{k=1}^K \sum_{i \in \mathcal{I}_k} E\left[E\left[(\Delta_i^l)^{\top} \partial_{\eta} \psi_i^z \mid X_i, (W_j : j \notin \mathcal{I}_k)\right]\right]$

$$
\stackrel{(1)}{=} n^{-1} \sum_{k=1}^K \sum_{i \in \mathcal{I}_k} E\left[(\Delta_i^l)^{\top} E\left[\partial_{\eta} \psi_i^z \mid X_i, (W_j : j \notin \mathcal{I}_k)\right]\right]
$$

$$
\stackrel{(2)}{=} 0,
$$

where (1) holds since $\Delta_i^l = \Delta_1^l(X_i)$ is a function of X_i and the data $(W_j : j \notin \mathcal{I}_k)$ used to estimate $\hat{\eta}_k(\cdot)$, and (2) holds by part (b) in Assumption [3.1.](#page-0-0)

Claim 1.2: $E[I_1^2] = O(n^{-1-2\min{\{\varphi_1, \varphi_2\}}})$. Recall that I use the following notation $\delta_{n_0,j,i} = \delta_{n_0}(W_j, X_i)$ and $\Delta_i^l = \Delta_1^l(X_i) = n_0^{-\varphi_1} n_0^{-1/2}$ $e^{-1/2} \sum_{j \notin \mathcal{I}_k} \delta_{n_0, j, i}$ for $i \in \mathcal{I}_k$. To show $E[I_1^2] = O(n^{-1-2\min\{\varphi_1,\varphi_2\}})$, consider the following derivations,

$$
E[I_1^2] \stackrel{(1)}{=} n^{-2} \sum_{i_1, i_2=1}^n E\left[(\Delta_{i_1}^l)^\top \partial_\eta \psi_{i_1}^z (\Delta_{i_2}^l)^\top \partial_\eta \psi_{i_2}^z \right]
$$

\n
$$
\stackrel{(2)}{\leq} n_0^{-2\varphi_1} n^{-2} \sum_{i=1}^n E\left[((\Delta_i^l)^\top \partial_\eta \psi_i^z)^2 \right] + n_0^{-2\varphi_1} n^{-2} \sum_{i_1 \neq i_2}^n |E\left[(\Delta_{i_1}^l)^\top \partial_\eta \psi_{i_1}^z (\Delta_{i_2}^l)^\top \partial_\eta \psi_{i_2}^z \right]|
$$

\n
$$
\stackrel{(3)}{\leq} n_0^{-2\varphi_1 - 1} E\left[\left(\delta_{n_0, j, i}^\top \partial_\eta \psi_i^z \right)^2 \right] + \frac{(n-1)n^{-1}}{n_0^{1+2\varphi_1}} |E\left[\delta_{n_0, i_2, i_1}^\top \partial_\eta \psi_{i_1}^z \delta_{n_0, i_1, i_2}^\top \partial_\eta \psi_{i_2}^z \right]|
$$

\n
$$
\stackrel{(4)}{\leq} n_0^{-2\varphi_1 - 1} E\left[\left(\delta_{n_0, j, i}^\top \partial_\eta \psi_i^z \right)^2 \right] + (n-1)n^{-1} n_0^{-(1+2\varphi_1)} E\left[\left(\delta_{n_0, i_2, i_1}^\top \partial_\eta \psi_{i_1}^z \right)^2 \right]^{1/2} E\left[\left(\delta_{n_0, i_1, i_2}^\top \partial_\eta \psi_{i_2}^z \right)^2 \right]^{1/2}
$$

\n
$$
= n_0^{-2\varphi_1 - 1} E\left[\left(\delta_{n_0, j, i}^\top \partial_\eta \psi_i^z \right)^2 \right] + (n-1)n^{-1} n_0^{-(1+2\varphi_1)} E\left[\left(\delta_{n_0, j, i}^\top \partial_\eta \psi_i^z \right)^2 \right]
$$

\n
$$
\stackrel{(5)}{\leq} n_0^{-2\varphi_1 -
$$

where (1) holds by definition of I_1 , (2) holds by triangular inequality, (3) holds by

[\(E.25\)](#page-47-0) and [\(E.26\)](#page-47-1) presented below, (4) holds by Cauchy-Schwartz inequality, and (5) holds by the derivations presented next,

$$
E\left[\left(\delta_{n_0,j,i}^\top \partial_\eta \psi_i^z\right)^2\right] = E\left[\delta_{n_0,j,i}^\top E\left[\left(\partial_\eta \psi_i^z (\partial_\eta \psi_i^z)^\top\right) \mid X_i, W_j\right] \delta_{n_0,j,i}\right]
$$

\n
$$
\stackrel{(1)}{=} E\left[\delta_{n_0,j,i}^\top E\left[\left(\partial_\eta \psi_i^z (\partial_\eta \psi_i^z)^\top\right) \mid X_i\right] \delta_{n_0,j,i}\right]
$$

\n
$$
\stackrel{(2)}{\leq} E\left[||\delta_{n_0,j,i}||^2\right] C_1 \times p
$$

\n
$$
\stackrel{(3)}{\leq} M_1^{1/2} C_1 \times p
$$

where (1) holds since $i \neq j$, (2) holds by part (d) of Assumption [3.1](#page-0-0) and Loeve's inequality [\(Davidson](#page-61-0) [\(1994,](#page-61-0) Theorem 9.28)), and (3) holds by Jensen's inequality (e.g., $E[||\delta(W_j, X_i)||^2]^{1/2} \leq E[||\delta(W_j, X_i)||^4]^{1/4}$) and part (b) of Assumption [3.2.](#page-0-0) Note these derivations complete the proof of claim 1.2.

The previous derivations used the following claims:

$$
E\left[((\Delta_i^l)^\top \partial_\eta \psi_i^z)^2\right] = n_0^{-1} \sum_{j \notin \mathcal{I}_k} E\left[\delta(W_j, X_i)^\top \partial_\eta \psi_i^z \delta(W_j, X_i)^\top \partial_\eta \psi_i^z\right] \tag{E.25}
$$

$$
E\left[(\Delta_{i_1}^l)^{\top} \partial_{\eta} \psi_{i_1}^z (\Delta_{i_2}^l)^{\top} \partial_{\eta} \psi_{i_2}^z \right] = n_0^{-1} E\left[\delta_{n_0, i_2, i_1}^{\top} \partial_{\eta} \psi_{i_1}^z \delta_{n_0, i_1, i_2}^{\top} \partial_{\eta} \psi_{i_2}^z \right] I\{k_1 \neq k_2\} \tag{E.26}
$$

To show [\(E.25\)](#page-47-0), consider the following derivations.

$$
E\left[(\Delta_i^l)^{\top} \partial_{\eta} \psi_i^z (\Delta_i^l)^{\top} \partial_{\eta} \psi_i^z \right] = n_0^{-1} \sum_{j_1 \notin \mathcal{I}_k} \sum_{j_2 \notin \mathcal{I}_k} E\left[\delta_{n_0, j_1, i}^{\top} \partial_{\eta} \psi_i^z \delta_{n_0, j_2, i}^{\top} \partial_{\eta} \psi_i^z \right]
$$

$$
\stackrel{\text{(1)}}{=} n_0^{-1} \sum_{j \notin \mathcal{I}_k} E\left[\delta(W_j, X_i)^{\top} \partial_{\eta} \psi_i^z \delta(W_j, X_i)^{\top} \partial_{\eta} \psi_i^z \right]
$$

where (1) holds due to the following: if $j_1 \neq j_2$, then

$$
E\left[\delta_{n_0,j_1,i}^{\top}\partial_{\eta}\psi_i^z\delta_{n_0,j_1,i}^{\top}\partial_{\eta}\psi_i^z\right] = E\left[E\left[\delta_{n_0,j_1,i}^{\top} \mid W_i, W_{j_2}\right]\partial_{\eta}\psi_i^z\delta_{n_0,j_2,i}^{\top}\partial_{\eta}\psi_i^z\right]
$$

\n
$$
= E\left[E\left[\delta_{n_0,j_1,i}^{\top} \mid X_i\right]\partial_{\eta}\psi_i^z\delta_{n_0,j_2,i}^{\top}\partial_{\eta}\psi_i^z\right]
$$

\n
$$
\stackrel{\text{(1)}}{=} 0,
$$

where (1) holds by definition of δ_{n_0} in part (a) of Assumption [3.2.](#page-0-0)

To show [\(E.26\)](#page-47-1), consider $i_1 \neq i_2$ where $i_1 \in \mathcal{I}_{k_1}$ and $i_2 \in \mathcal{I}_{k_2}$, therefore

$$
E\left[(\Delta_{i_1}^l)^{\top} \partial_{\eta} \psi_{i_1}^z (\Delta_{i_2}^l)^{\top} \partial_{\eta} \psi_{i_2}^z \right] = n_0^{-1} \sum_{j_1 \notin \mathcal{I}_{k_1}} \sum_{j_2 \notin \mathcal{I}_{k_2}} E\left[\delta_{n_0, j_1, i_1}^{\top} \partial_{\eta} \psi_{i_1}^z \delta_{n_0, j_2, i_2}^{\top} \partial_{\eta} \psi_{i_2}^z \right]
$$

$$
\stackrel{\text{(1)}}{=} n_0^{-1} E\left[\delta_{n_0, i_2, i_1}^{\top} \partial_{\eta} \psi_{i_1}^z \delta_{n_0, i_1, i_2}^{\top} \partial_{\eta} \psi_{i_2}^z \right] I\{k_1 \neq k_2\}
$$

where (1) holds since $k_1 = k_2$ implies $j_2 \neq i_1$ and $j_1 \neq i_2$, and because the conditions $j_2 \neq i_1$ or $j_1 \neq i_2$ imply that $E\left[\delta^\top_{n_0,j_1,i_1}\partial_\eta\psi_{i_1}^z\delta^\top_{n_0,j_2,i_2}\partial_\eta\psi_{i_2}^z\right]$ is zero. To see this, suppose $j_2 \neq i_1$ and consider the following derivations,

$$
E\left[\delta_{n_{0},j_{1},i_{1}}^{\top}\partial_{\eta}\psi_{i_{1}}^{z}\delta_{n_{0},j_{2},i_{2}}^{\top}\partial_{\eta}\psi_{i_{2}}^{z}\right] = E\left[E\left[\delta_{n_{0},j_{1},i_{1}}^{\top}\partial_{\eta}\psi_{i_{1}}^{z}\delta_{n_{0},j_{2},i_{2}}^{\top}\partial_{\eta}\psi_{i_{2}}^{z}\mid X_{i_{1}},W_{i_{2}},W_{j_{1}},W_{j_{2}}\right]\right]
$$

\n
$$
= E\left[\delta_{n_{0},j_{1},i_{1}}^{\top}E\left[\partial_{\eta}\psi_{i_{1}}^{z}\mid X_{i_{1}},W_{i_{2}},W_{j_{1}},W_{j_{2}}\right]\delta_{n_{0},j_{2},i_{2}}^{\top}\partial_{\eta}\psi_{i_{2}}^{z}\right]
$$

\n
$$
\stackrel{\text{(1)}}{=} E\left[\delta_{n_{0},j_{1},i_{1}}^{\top}E\left[\partial_{\eta}\psi_{i_{1}}^{z}\mid X_{i_{1}}\right]\delta_{n_{0},j_{2},i_{2}}^{\top}\partial_{\eta}\psi_{i_{2}}^{z}\right]
$$

\n
$$
\stackrel{\text{(2)}}{=} 0,
$$

where (1) holds since $i_1 \notin \{i_2, j_1, j_2\}$ (since $i_1 \neq j_2$) and (2) holds by part (b) in Assumption [3.1.](#page-0-0) Similar derivations conclude the same for $j_1 \neq i_2$.

Claim 2: $I_2 = O(n^{-1/2 - \min\{\varphi_1, \varphi_2\}})$. Define $X^{(n)} = \{X_i : 1 \le i \le n\}$. I first show $E[I_2 \mid X^{(n)}] = 0$. I then show $E[I_2^2] \leq n^{-1}E[||\Delta_i^b||^2]C_1p$, which is sufficient to conclude due to Lemma [C.1](#page-0-0) that implies that $E[||\Delta_i^b||^2]$ is $O(n^{-2\min\{\varphi_1,\varphi_2\}})$ due to Cauchy-Schwartz.

The first part holds due to the following derivations,

$$
E[I_2 \mid X^{(n)}] = E\left[n^{-1} \sum_{i=1}^n (\Delta_i^b)^\top \partial_\eta \psi_i^z \mid X^{(n)}\right]
$$

$$
\stackrel{(1)}{=} n^{-1} \sum_{i=1}^n (\Delta_i^b)^\top E\left[\partial_\eta \psi_i^z \mid X^{(n)}\right]
$$

$$
\stackrel{(2)}{=} n^{-1} \sum_{i=1}^n (\Delta_i^b)^\top E\left[\partial_\eta \psi_i^z \mid X_i\right]
$$

$$
\stackrel{(3)}{=} 0,
$$

where (1) holds since Δ_i^b is function of $X^{(n)}$ and $\Delta_i^b = n_0^{-\varphi_2} n_0^{-1} \sum_{i_0 \notin \mathcal{I}_k} b(X_{i_0}, X_i)$ for

 $i \in \mathcal{I}_k$ due to part (a) of Assumption [3.2,](#page-0-0) (2) holds since the observations are i.i.d., and (3) follows due to part (b) of Assumption [3.1.](#page-0-0)

To prove that $E[I_2^2] \leq n^{-1}E[||\Delta_i^b||^2]C_1p$, first note that

$$
E[I_2^2 | X^{(n)}] = E\left[\left(n^{-1} \sum_{i=1}^n (\Delta_i^b)^{\top} \partial_{\eta} \psi_i^z \right)^2 | X^{(n)} \right]
$$

$$
\stackrel{(1)}{=} E\left[n^{-2} \sum_{i=1}^n ((\Delta_i^b)^{\top} \partial_{\eta} \psi_i^z)^2 | X^{(n)} \right]
$$

$$
\stackrel{(2)}{=} n^{-2} \sum_{i=1}^n (\Delta_i^b)^{\top} E\left[(\partial_{\eta} \psi_i^z)(\partial_{\eta} \psi_i^z)^{\top} | X_i \right] \Delta_i^b
$$

$$
\stackrel{(1)}{\leq} n^{-2} \sum_{i=1}^n ||\Delta_i^b||^2 C_1 \times p
$$

where (1) holds because $E\left[\left((\Delta_i^b)^\top \partial_\eta \psi_i^z\right) \left((\Delta_j^b)^\top \partial_\eta \psi_j^z\right) \mid X^{(n)}\right] = 0$ when $i \neq j$ (since Δ_i^b and Δ_j^b are functions of $X^{(n)}$, and part (b) of Assumption [3.1\)](#page-0-0), (2) holds since Δ_i^b and Δ_j^b are functions of $X^{(n)}$ and the observations are i.i.d., and (3) holds by part (d) of Assumption [3.1.](#page-0-0) Then,

$$
E[E[I_2^2 \mid X^{(n)}]] \le E[n^{-2} \sum_{i=1}^n ||\Delta_i^b||^2 C_1 \times p] = n^{-1} E[||\Delta_i^b||^2] C_1 p
$$

which completes the proof of this claim.

Claim 3: $I_3 = O_p(n_0^{-2\min\{\varphi_1,\varphi_2\}})$ $_{0}^{-2\min\{\varphi_{1},\varphi_{2}\}}$). Algebra shows

$$
|I_3| = |n_0^{-2 \min{\{\varphi_1, \varphi_2\}}} n^{-1} \sum_{i=1}^n \hat{R}_1(X_i)^{\top} \partial_{\eta} \psi_i^z|
$$

\n
$$
\leq n_0^{-2 \min{\{\varphi_1, \varphi_2\}}} \left(n^{-1} \sum_{i=1}^n ||\hat{R}_1(X_i)||^2 \right)^{1/2} \left(n^{-1} \sum_{i=1}^n ||\partial_{\eta} \psi_i^z||^2 \right)^{1/2}
$$

\n
$$
\stackrel{(1)}{=} n_0^{-2 \min{\{\varphi_1, \varphi_2\}}} \times O_p(1) \times \left(n^{-1} \sum_{i=1}^n ||\partial_{\eta} \psi_i^z||^2 \right)^{1/2},
$$

\n
$$
\stackrel{(2)}{=} n_0^{-2 \min{\{\varphi_1, \varphi_2\}}} \times O_p(1) \times O_p(1),
$$

$$
\stackrel{(3)}{=} O_p(n_0^{-2\min\{\varphi_1,\varphi_2\}}),
$$

where (1) holds by part (c) of Assumption [3.2,](#page-0-0) (2) holds by the law of large numbers, Jensen's inequality (e.g., $(E[||\partial_{\eta}\psi_i^z||^2] \le E[||\partial_{\eta}\psi_i^z||^4]^{1/2}$), and part (c) of Assumption [3.1,](#page-0-0) and (3) holds since $n/2 \leq n \leq n$

Part 2: By Taylor approximation and mean-value theorem (since $\psi^z(w, \eta)$ is twice continuously differentiable on η by Assumption [3.1\)](#page-0-0), it follows

$$
\hat{\psi}_i^z - \psi_i^z = (\hat{\eta}_i - \eta_i)^\top \partial_\eta \psi_i^z + \frac{1}{2} (\hat{\eta}_i - \eta_i)^\top \partial_\eta^2 \tilde{\psi}_i^z (\hat{\eta}_i - \eta_i)
$$

where $\partial_{\eta}^2 \tilde{\psi}_i^z = \partial_{\eta}^2 \psi^z(W_i, \eta)|_{\eta = \tilde{\eta}_i}$ for some $\hat{\eta}_i$ (due to mean-value theorem). Using this

$$
n^{-1} \sum_{i=1}^{n} (\hat{\psi}_{i}^{z} - \psi_{i}^{z}) = n^{-1} \sum_{i=1}^{n} (\hat{\eta}_{i} - \eta_{i})^{\top} \partial_{\eta} \psi_{i}^{z} + \frac{1}{2} n^{-1} \sum_{i=1}^{n} (\hat{\eta}_{i} - \eta_{i})^{\top} \partial_{\eta}^{2} \tilde{\psi}_{i}^{z} (\hat{\eta}_{i} - \eta_{i})
$$

$$
\stackrel{\text{(1)}}{=} O_{p}(n^{-\min\{\varphi_{1},\varphi_{2}\}-1/2}) + \frac{1}{2} n^{-1} \sum_{i=1}^{n} (\hat{\eta}_{i} - \eta_{i})^{\top} \partial_{\eta}^{2} \tilde{\psi}_{i}^{z} (\hat{\eta}_{i} - \eta_{i})
$$

$$
\stackrel{\text{(2)}}{=} O_{p}(n^{-2\min\{\varphi_{1},\varphi_{2}\}}),
$$

where (1) holds due to Part 1, and (2) holds due to the derivations presented next,

$$
|n^{-1} \sum_{i=1}^{n} (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta}^2 \tilde{m}_i (\hat{\eta}_i - \eta_i) | \leq n^{-1} \sum_{i=1}^{n} |(\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta}^2 \tilde{m}_i (\hat{\eta}_i - \eta_i) |
$$

$$
\leq n^{-1} \sum_{i=1}^{n} ||\hat{\eta}_i - \eta_i||^2 C_2 \times p ,
$$

$$
\stackrel{(2)}{=} O_p(n^{-2 \min\{\varphi_1, \varphi_2\}}) ,
$$

where (1) holds due to part (e) of Assumption [3.1](#page-0-0) and Loeve's inequality [\(Davidson](#page-61-0) $(1994,$ Theorem 9.28), and (2) holds due to part 4 of Lemma [C.4.](#page-0-0)

Part 3: It follows from part 1, by using that $\partial_{\eta} m_i = \partial_{\eta} \psi_i^b - \partial_{\eta} \psi_i^a \theta_0$ and $|\theta_0| \leq$ $M_1^{1/4}$ $1/1/4$ / C_0 (due to parts (a) and (c) of Assumptions [3.1](#page-0-0) and the representation of θ_0 as a ratio of expected values in [\(2.3\)](#page-0-0)).

Part 4: By Taylor expansion and mean value theorem,

$$
\hat{m}_i - m_i = (\hat{\eta}_i - \eta_i)^\top \partial_\eta m_i + (\hat{\eta}_i - \eta_i)^\top (\partial_\eta^2 m_i/2)(\hat{\eta}_i - \eta_i) + \tilde{r}_i,
$$

where \tilde{r}_i is the Lagrange's remainder error term (since m is three-times continuous differentiable on η by assumption on ψ^z). Therefore,

$$
|\tilde{r}_i| \le (1/6)p^{3/2}C_3||\hat{\eta}_i - \eta_i||^3 , \qquad (E.27)
$$

where the bound follows by part (e) of Assumption [3.1,](#page-0-0) Jensen's inequality, and the definition of Euclidean norm. It follows

$$
n^{-1/2} \sum_{i=1}^{n} (\hat{m}_i - m_i) / J_0 = I_1 + I_2 + I_3 ,
$$

where

$$
I_1 = n^{-1/2} \sum_{i=1}^n (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta} m_i / J_0
$$

\n
$$
I_2 = n^{-1/2} \sum_{i=1}^n (\hat{\eta}_i - \eta_i)^{\top} (\partial_{\eta}^2 m_i / (2J_0)) (\hat{\eta}_i - \eta_i)
$$

\n
$$
I_3 = n^{-1/2} \sum_{i=1}^n \tilde{r}_i / J_0
$$

In the claims below I show that $I_1 = \mathcal{T}_{n,K}^l + o_p(n^{-\zeta}), I_2 = \mathcal{T}_{n,K}^{nl} + o_p(n^{-\zeta}),$ and $I_3 =$ $o_p(n^{-\zeta})$, which is sufficient to complete the proof of part 4. Furthermore, if Assump-tion [3.3](#page-0-0) holds, then Proposition [C.5](#page-0-0) implies $\lim_{n\to\infty} \inf_{K\leq n} Var[n^{2\varphi_1-1} \mathcal{T}_{n,K}^{nl}] > 0$; and if Assumption [A.1](#page-0-0) holds, then Proposition [C.3](#page-0-0) implies $\lim_{n\to\infty} \inf_{K\leq n} Var[n^{\varphi_1} \mathcal{T}_{n,K}^l] >$ 0.

Claim 1: $I_1 = \mathcal{T}_{n,K}^l + O_p(n^{-2\min\{\varphi_1,\varphi_2\}})$. By part (a) of Assumption [3.2,](#page-0-0) it follows

$$
I_1 = I_{1,1} + I_{1,2} ,
$$

where $\hat{R}_i = \hat{R}(X_i)$ for $i \in \mathcal{I}_k$ and

$$
I_{1,1} = n^{-1/2} \sum_{i=1}^{n} (\Delta_i)^{\top} \partial_{\eta} m_i / J_0
$$

$$
I_{1,2} = n^{-1/2} \sum_{i=1}^{n} (n_0^{-2\varphi_1} \hat{R}_i)^{\top} \partial_{\eta} m_i / J_0
$$

By definition of $\mathcal{T}_{n,K}^l$ in [\(A-3\)](#page-0-0), it follows that $I_{1,1} = \mathcal{T}_{n,K}^l$. Since $\partial_{\eta} m_i = \partial_{\eta} \psi_i^b - \theta_0 \partial_{\eta} \psi_i^a$ and $|\theta_0| \leq M^{1/4}/C_0$, it follows that $I_{1,2}$ is $O_p(n^{-2\min\{\varphi_1,\varphi_2\}})$ due to proof of Claim 3 in Part 1 of this lemma.

Claim 2: $I_2 = \mathcal{T}_{n,K}^{nl} + O_p(n^{1/2-3\min\{\varphi_1,\varphi_2\}})$. By part (a) of Assumption [3.2,](#page-0-0) it follows

$$
I_2 = I_{2,1} + 2I_{2,2} + I_{2,3}
$$

where $\hat{R}_i = \hat{R}(X_i)$ for $i \in \mathcal{I}_k$ and

$$
I_{2,1} = n^{-1/2} \sum_{i=1}^{n} (\Delta_i)^{\top} (\partial_{\eta}^{2} m_i / (2J_0))(\Delta_i)
$$

\n
$$
I_{2,2} = n^{-1/2} \sum_{i=1}^{n} (\Delta_i)^{\top} (\partial_{\eta}^{2} m_i / (2J_0)) (n_0^{-2\varphi_1} \hat{R}_i)
$$

\n
$$
I_{2,3} = n^{-1/2} \sum_{i=1}^{n} (n_0^{-2\varphi_1} \hat{R}_i)^{\top} (\partial_{\eta}^{2} m_i / (2J_0)) (n_0^{-2\varphi_1} \hat{R}_i)
$$

By definition of $\mathcal{T}_{n,K}^{nl}$ in [\(3.12\)](#page-0-0), it follows that $I_{2,1} = \mathcal{T}_{n,K}^{nl}$. In what follows, I prove claims that imply $I_{2,j} = o_p(n^{-\zeta})$ for $j = 2, 3$ using that $\zeta < 3\varphi_1 - 1/2$ since $\varphi_1 < 1/2$, which is sufficient to complete the proof of claim 2.

Claim 2.1: $I_{2,2} = O_p(n^{1/2-3\min\{\varphi_1,\varphi_2\}})$. To see this, consider the following derivations,

$$
|I_{2,2}| \stackrel{(1)}{\leq} n^{1/2} \times pC_2 \left(n^{-1} \sum_{i=1}^n ||\Delta_i|| \times ||n_0^{-2 \min\{\varphi_1, \varphi_2\}} \hat{R}_i|| \right)
$$

$$
\stackrel{(2)}{\leq} n^{1/2} n_0^{-2 \min\{\varphi_1, \varphi_2\}} \times pC_2 \left(n^{-1} \sum_{i=1}^n ||\Delta_i||^2 \right)^{1/2} \times \left(n^{-1} \sum_{i=1}^n ||\hat{R}_i||^2 \right)^{1/2}
$$

$$
\stackrel{\text{(3)}}{=} n^{1/2} n_0^{-2 \min\{\varphi_1, \varphi_2\}} \times O_p(n^{-\min\{\varphi_1, \varphi_2\}}) \times O_p(1)
$$
\n
$$
= O_p(n^{1/2 - 3 \min\{\varphi_1, \varphi_2\}})
$$

where (1) holds by triangle inequality, part (e) of Assumption [3.1,](#page-0-0) Jensen's inequality, and definition of Euclidean norm, (2) holds by Cauchy-Schwartz inequality, (3) holds by Lemma [C.1](#page-0-0) and by part (c) of Assumption [3.2](#page-0-0) and Markov's inequality.

Claim 2.2: $I_{2,3} = O_p(n^{1/2-4\min\{\varphi_1,\varphi_2\}})$. The proof is similar to Claim 2.1; therefore, it is omitted.

Claim 3: $I_3 = O_p(n^{1/2 - 3\min\{\varphi_1, \varphi_2\}})$. Using [\(E.27\)](#page-51-0), it follows

$$
|I_3| \le (1/6)p^{3/2}C_3/J_0 n^{-1/2} \sum_{i=1}^n ||\hat{\eta}_i - \eta_i||^3.
$$

In what follows, I prove that $n^{-1/2} \sum_{i=1}^{n} ||\hat{\eta}_i - \eta_i||^3$ is $O_p(n^{1/2 - 3\varphi_1})$.

By part (a) of Assumption [3.2](#page-0-0) and since $\varphi_1 \leq \varphi_2$, it follows

$$
\hat{\eta}_i - \eta_i = \Delta_i + n_0^{-2\min\{\varphi_1, \varphi_2\}} \hat{R}_i
$$

where $\Delta_i = \Delta_i^l + \Delta_i^b$ and $\hat{R}_i = \hat{R}(X_i)$. Using triangle inequality and Loeve's inequality [\(Davidson](#page-61-0) [\(1994,](#page-61-0) Theorem 9.28)) in the previous expression, it follows

$$
||\hat{\eta}_i - \eta_i||^3 \le 2^2 \left(||\Delta_i||^3 + n_0^{-6 \min\{\varphi_1, \varphi_2\}} ||\hat{R}_i||^3 \right)
$$

which implies

$$
n^{-1} \sum_{i=1}^{n} ||\hat{\eta}_i - \eta_i||^3 \le 2^2 (I_{3,1} + I_{3,2})
$$

where

$$
I_{3,1} = n^{-1} \sum_{i=1}^{n} ||\Delta_i||^3
$$

$$
I_{3,2} = n^{-1} \sum_{i=1}^{n} n_0^{-6\varphi_1} ||\hat{R}_i||^3
$$

To complete the proof of claim 3, it is sufficient to show $I_{3,1} = O_p(n^{-3\varphi_1})$ and $I_{3,2} = O_p(n^{1/2 - 6\varphi_1})$, since they imply $n^{-1/2} \sum_{i=1}^n ||\hat{\eta}_i - \eta_i||^3$ is $O_p(n^{1/2 - 3\varphi_1})$.

Claim 3.1: $I_{3,1} = O_p(n^{-3\min\{\varphi_1,\varphi_2\}})$. The proof is a direct result of Lemma [C.1](#page-0-0) and Markov's inequality; therefore, it is omitted.

Claim 3.2: $I_{3,2} = O_p(n^{1/2 - 6\min\{\varphi_1, \varphi_2\}})$. Consider the following derivations,

$$
I_{3,2} \stackrel{(1)}{\leq} n^{1/2} n^{-6 \min\{\varphi_1, \varphi_2\}} \left(n^{-1} \sum_{i=1}^n ||\hat{R}_i||^2 \right)^{3/2}
$$

$$
\stackrel{(2)}{=} n^{1/2} \times n^{-6 \min\{\varphi_1, \varphi_2\}} \times O_p(1)
$$

where (1) holds by Loeve's inequality [\(Davidson](#page-61-0) $(1994,$ Theorem 9.28)), and (2) holds by part (c) of Assumption [3.2](#page-0-0) with Markov's inequality. This completes the proof of claim 3.3.

Claim 1 and Claim 2 in the proof of Part 1 imply that $\mathcal{T}_{n,K}^l$ is $O_p(n^{-\min\{\varphi_1,\varphi_2\}})$. By the same argument used in the proof of Part 2 to bound the non-linear expres-sion (but using Lemma [E.8](#page-44-0) instead of part 4 of Lemma [C.4\)](#page-0-0), it follows that $\mathcal{T}_{n,K}^{nl}$ is $O_p(n^{1/2-2\min\{\varphi_1,\varphi_2\}}).$ \Box

E.10 Proof of Lemma [C.3](#page-0-0)

Proof. In what follows, the results are proved for any given sequence K that diverges to infinity as n diverges to infinity, which is sufficient to guarantee the result of this lemma.

Part 1: The proof of $(C-3)$ has two steps. The first step shows

$$
E\left[\left(n_k^{-1/2}\sum_{i\in\mathcal{I}_k}(\hat{\eta}_i-\eta_i)^\top\partial_\eta\psi_i^z\right)^2\right] \le Cn^{-2\min\{\varphi_1,\varphi_2\}},\tag{E.28}
$$

for some positive constant $C = C(p, C_1, M_1, M_2)$. The second step shows

$$
E\left[\max_{k=1,\dots,K} \left(n_k^{-1/2} \sum_{i \in \mathcal{I}_k} (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta} \psi_i^z\right)^2\right] \leq CKn^{-1/2}n^{-2\min\{\varphi_1,\varphi_2\}+1/2} \tag{E.29}
$$

which is sufficient to prove [\(C-3\)](#page-0-0) by using Markov's inequality and $1/2 < 2 \min{\{\varphi_1, \varphi_2\}}$.

Step 1: Consider the following derivation

$$
E\left[\left(n_k^{-1/2}\sum_{i\in\mathcal{I}_k}(\hat{\eta}_i-\eta_i)^{\top}\partial_{\eta}\psi_i^z\right)^2 \mid (W_j:j\notin\mathcal{I}_k)\right]
$$

which is equal to

$$
\stackrel{(1)}{\equiv} E\left[n_k^{-1} \sum_{i \in \mathcal{I}_k} \left((\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta} \psi_i^z\right)^2 \mid (W_j : j \notin \mathcal{I}_k)\right]
$$
\n
$$
\stackrel{(2)}{\equiv} n_k^{-1} \sum_{i \in \mathcal{I}_k} (\hat{\eta}_i - \eta_i)^{\top} E\left[(\partial_{\eta} \psi^z)(\partial_{\eta} \psi^z)^{\top} \mid (W_j : j \notin \mathcal{I}_k)\right] (\hat{\eta}_i - \eta_i)
$$
\n
$$
\stackrel{(3)}{\leq} C_1 \times p \times n_k^{-1} \sum_{i \in \mathcal{I}_k} ||\hat{\eta}_k(X_i) - \eta_0(X_i)||^2
$$

where (1) by the i.i.d zero mean of the random vectors $\{(\hat{\eta}_i - \eta_i)^\top \partial_{\eta} \psi_i^z : i \in \mathcal{I}_k\}$ conditional on $(W_j : j \notin \mathcal{I}_k)$ that holds by part (b) of Assumption [3.1,](#page-0-0) (2) holds since $\hat{\eta}_i - \eta_i$ are not random conditional on $(W_j : j \notin \mathcal{I}_k)$, and (3) by part (d) of Assumption [3.1](#page-0-0) and Loeve's inequality [\(Davidson](#page-61-0) [\(1994,](#page-61-0) Theorem 9.28)).

Using the previous derivations, it follows

$$
E\left[\left(n_k^{-1/2}\sum_{i\in\mathcal{I}_k}(\hat{\eta}_i-\eta_i)^{\top}\partial_{\eta}\psi_i^z\right)^2\right] \leq E\left[C_1\times p\times n_k^{-1}\sum_{i\in\mathcal{I}_k}||\hat{\eta}_k(X_i)-\eta_0(X_i)||^2\right]
$$

$$
\stackrel{(1)}{=} C_1\times p\times E\left[||\hat{\eta}_k(X_i)-\eta_0(X_i)||^2\right]
$$

$$
\stackrel{(2)}{\leq} C n^{-2\min\{\varphi_1,\varphi_2\}}
$$

for some positive constant $C = C(p, C_1, M_1, M_2)$, where (1) holds since $\hat{\eta}_k(X_i) - \eta_0(X_i)$ are i.i.d. for $i \in \mathcal{I}_k$, and (2) by part 2 of Lemma [C.4](#page-0-0) and [\(E.31\)](#page-57-0), which defines the constant C. This completes the proof of step 1.

Step 2: Note that the maximum of K positive number is bounded by their sum. Using this observation and $(E.28)$, it follows $(E.29)$.

Part 2: The proof of $(C-4)$ is similar to the proof part 1. It follows from the following inequality:

$$
E\left[\max_{k=1,\dots,K} n_k^{-1} \sum_{i \in \mathcal{I}_K} ||\hat{\eta}_i - \eta_i||^2\right] \leq E\left[\sum_{k=1}^K \left(n_k^{-1} \sum_{i \in \mathcal{I}_K} ||\hat{\eta}_i - \eta_i||^2\right)\right]
$$

= $KE\left[||\hat{\eta}_i - \eta_i||^2\right]$
 $\leq Kn^{-1/2}O(n^{-2\min{\{\varphi_1,\varphi_2\}}+1/2}),$

which goes to zero since $1/2 < 2 \min{\lbrace \varphi_1, \varphi_2 \rbrace}$, and this is sufficient to prove [\(C-4\)](#page-0-0) by using Markov's inequality.

Part 3: The proof of [\(C-5\)](#page-0-0) follows from [\(C-3\)](#page-0-0), by using $\partial_{\eta}m_i = \partial_{\eta}\psi^b - \theta_0\partial_{\eta}\psi^a$ and $|\theta_0| \leq M_1^{1/4}$ $1^{1/4}$ /C₀ (due to parts (a) and (c) of Assumptions [3.1](#page-0-0) and [\(2.3\)](#page-0-0)).

Part 4: The proof of $(C-6)$ follows from $(C-3)$ and $(C-4)$ and the following inequality

$$
\left| n_k^{-1} \sum_{i \in \mathcal{I}_k} \hat{\psi}_i^a - \psi_i^a \right| \le n_k^{-1/2} \left| n_k^{-1/2} \sum_{i \in \mathcal{I}_k} (\hat{\eta}_i - \eta_i)^{\top} \partial_{\eta} \psi_i^z \right| + C_2 p n_k^{-1} \sum_{i \in \mathcal{I}_k} ||\hat{\eta}_i - \eta_i||^2
$$

which holds due to Taylor expansion and mean valued theorem, part (e) of Assumption [3.1,](#page-0-0) and Loeves' inequality. \Box

E.11 Proof of Lemma [C.4](#page-0-0)

Proof. For $i \in \mathcal{I}_k$, denote $\Delta_i = \Delta_i^b + \Delta_i^l$, where

$$
\Delta_i^l = n_0^{-\varphi_1} n_0^{-1/2} \sum_{j \notin \mathcal{I}_k} \delta_{n_0, j, i} ,
$$

$$
\Delta_i^b = n_0^{-\varphi_2} n_0^{-1} \sum_{j \notin \mathcal{I}_k} b_{n_0, j, i} ,
$$

Here, $\delta_{n_0,j,i} = \delta_{n_0}(W_j, X_i)$ and $b_{n_0,j,i} = b_{n_0}(X_j, X_i)$, and δ_{n_0} and b_{n_0} are functions satisfying Assumption [3.2.](#page-0-0) In what follows, the results are proved for any given sequence K that diverges to infinity as n diverges to infinity, which is sufficient to guarantee the result of this lemma.

Part 1: By part (a) of Assumption [3.2,](#page-0-0)

$$
\hat{\eta}_i - \eta_i = \Delta_i^l + \Delta_i^b + n_0^{-2\min\{\varphi_1, \varphi_2\}} \hat{R}_i
$$

and by Loeve's inequality [\(Davidson](#page-61-0) [\(1994,](#page-61-0) Theorem 9.28)),

$$
||\hat{\eta}_i - \eta_i||^4 \leq 3^3 \left(||\Delta_i^l||^4 + ||\Delta_i^b||^4 + ||n_0^{-2\min\{\varphi_1, \varphi_2\}} \hat{R}_i||^4 \right) .
$$

Using the previous inequality, it follows

$$
n^{-1} \sum_{i=1}^{n} ||\hat{\eta}_i - \eta_i||^4 \le 3^3 \left(n^{-1} \sum_{i=1}^{n} ||\Delta_i^l||^4 + n^{-1} \sum_{i=1}^{n} ||\Delta_i^b||^4 + n_0^{-8 \min\{\varphi_1, \varphi_2\}} n^{-1} \sum_{i=1}^{n} ||\hat{R}_i||^4 \right)
$$

$$
\stackrel{(1)}{\leq} 3^3 \left(O_p(n^{-4 \min\{\varphi_1, \varphi_2\}}) + n_0^{-8 \min\{\varphi_1, \varphi_2\}} n^{-1} \sum_{i=1}^{n} ||\hat{R}_i||^4 \right)
$$

$$
\stackrel{(2)}{=} O_p(n^{-4 \min\{\varphi_1, \varphi_2\}}), \tag{E.30}
$$

where (1) holds by Markov's inequality and Lemma [C.1,](#page-0-0) and (2) holds by part (d) of Assumption [3.2](#page-0-0) and since $n_0 = ((K - 1)/K)n$, which completes the proof of part 1.

Part 2: By part (a) of Assumption [3.2,](#page-0-0)

$$
\hat{\eta}_i - \eta_i = \Delta_i^l + \Delta_i^b + n_0^{-2 \min\{\varphi_1, \varphi_2\}} \hat{R}_i
$$

and by Loeve's inequality [\(Davidson](#page-61-0) [\(1994,](#page-61-0) Theorem 9.28)),

$$
||\hat{\eta}_i - \eta_i||^2 \leq 3||\Delta_i^l||^2 + 3||\Delta_i^b||^2 + 3||n_0^{-2\varphi_1}\hat{R}_i||^2.
$$

Using the previous inequality, it follows

$$
E[||\hat{\eta}_i - \eta_i||^2] \le 3E[||\Delta_i^l||^2] + 3E[||\Delta_i^b||^2] + 3E[||n_0^{-2\varphi_1}\hat{R}_i||^2]
$$

\n
$$
\le 3E[||\Delta_i^l||^4]^{1/2} + 3E[||\Delta_i^b||^4]^{1/2} + 3n_0^{-2\min{\{\varphi_1, \varphi_2\}}}O(1)
$$

\n
$$
\stackrel{(2)}{=} O(n^{-2\min{\{\varphi_1, \varphi_2\}}}),
$$
\n(E.31)

where (1) holds by Jensen's inequality and part (c) of Assumption [3.2,](#page-0-0) and (2) holds by Lemma [C.1](#page-0-0) and since $n_0 = ((K - 1)/K)n$. This completes the proof of part 2.

Part 3: It follows from parts 2 and Markov's inequality.

Part 4: It follows from part 2 and by using that $n^{1/2 - \min{\{\varphi_1, \varphi_2\}}} = o(1)$. \Box

Lemma E.1. Suppose Assumptions [3.1](#page-0-0) and [3.2](#page-0-0) hold. In addition, assume K is such that $K \le n$, $K \to \infty$ and $K/n^{\gamma} \to c \in [0, +\infty)$ as $n \to \infty$.

1. If $\gamma = 1/2$, then

$$
\max_{k=1,\dots,K} \left| 1 + n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi^a(W_i, \eta_i) - J_0) / J_0 \right|^{-1} = O_p(1)
$$

2. If $\gamma = 1/2$, $1/4 < \min{\lbrace \varphi_1, \varphi_2 \rbrace}$ and $\varphi_1 \leq 1/2$, then

$$
\max_{k=1,\dots,K} \left| 1 + n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi^a(W_i, \hat{\eta}_i) - J_0) / J_0 \right|^{-1} = O_p(1)
$$

3. If $\gamma = 1$, then

$$
\left| n^{-1} \sum_{i=1}^{n} \psi^a(W_i, \eta_i) / J_0 \right|^{-1} = O_p(1)
$$

4. If $\gamma = 1$ and $\varphi_1 > 1/4$, then

$$
\left| n^{-1} \sum_{i=1}^{n} \psi^a(W_i, \hat{\eta}_i) / J_0 \right|^{-1} = O_p(1)
$$

where $\eta_i = \eta_0(X_i)$, $\hat{\eta}_i$ is as in [\(2.5\)](#page-0-0), and $J_0 = E[\psi^a(W_i, \eta_i)]$.

Proof. Part 1: Consider $M > 1$ and the following derivations

$$
P\left(\max_{k=1,\dots,K} \left| 1 + n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 \right|^{-1} \le M \right)
$$

$$
\begin{split}\n&\stackrel{\text{(1)}}{=} P\left(\left|1+n_k^{-1}\sum_{i\in\mathcal{I}_k} (\psi_i^a - J_0)/J_0\right|^{-1} \leq M\right)^K \\
&= P\left(1/M \leq \left|1+n_k^{-1}\sum_{i\in\mathcal{I}_k} (\psi_i^a - J_0)/J_0\right|\right)^K \\
&\geq P\left(1/M \leq 1+n_k^{-1}\sum_{i\in\mathcal{I}_k} (\psi_i^a - J_0)/J_0\right)^K \\
&= \left\{1-P\left(n_k^{-1}\sum_{i\in\mathcal{I}_k} (\psi_i^a - J_0)/J_0 < -(M-1)/M\right)\right\}^K \\
&\geq 2\left\{1-P\left(\left|n_k^{-1}\sum_{i\in\mathcal{I}_k} (\psi_i^a - J_0)/J_0\right| > (M-1)/M\right)\right\}^K \\
&\geq 3\left\{1-((M-1)/M)^4n_k^{-2}E\left[\left|n_k^{-1/2}\sum_{i\in\mathcal{I}_k} (\psi_i^a - J_0)/J_0\right|^4\right]\right\}^K \\
&\geq 1-((M-1)/M)^4n_k^{-2}10E\left[\left|\left(\psi_i^a - J_0\right)/J_0\right|^4\right]^K \\
&\geq 1-((M-1)/M)^4n^{-2}K^210E\left[\left|\left(\psi_i^a - J_0\right)/J_0\right|^4\right]^K \\
&\geq 1-n^{-2+3/2}(Kn^{-1/2})^3((M-1)/M)^4O(1)\n\end{split}
$$

(1) holds since $\{\psi_i^a: 1 \leq i \leq n\}$ are i.i.d. random variables and because $\{\mathcal{I}_k: 1 \leq k \leq n\}$ K} defines a partition of $\{1, \ldots, n\}$, (2) holds since $M > 1$, (3) holds by Markov's inequality, (4) holds since $\{\psi_i^a - J_0 : i \in \mathcal{I}_k\}$ are zero mean i.i.d. random variables, (5) holds by Bernoulli's inequality, (6) holds by parts (a) and (c) of Assumption [3.1,](#page-0-0) and (7) holds since $K = O(n^{1/2})$.

Part 2: Define the event $E_{n,\epsilon} = {\max_{k=1,\ldots,K}}$ n_k^{-1} $\sum_{k=1}^{n} \sum_{i \in \mathcal{I}_k} (\hat{\psi}_i^a - \psi_i^a) / J_0$ $\langle \epsilon \rangle$. Now, consider an small $\epsilon > 0$ and $M > 1$ such that $(1/M + \epsilon)^{-1} > 1$ and the following derivations

$$
P\left(\max_{k=1,\dots,K} \left| 1 + n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 + (\hat{\psi}_i^a - \psi_i^a) / J_0 \right|^{-1} \le M \right)
$$

$$
= P\left(\min_{k=1,\dots,K} \left| 1 + n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 + (\hat{\psi}_i^a - \psi_i^a) / J_0 \right| \ge 1/M \right)
$$

\n
$$
\ge P\left(\min_{k=1,\dots,K} \left| 1 + n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 + (\hat{\psi}_i^a - \psi_i^a) / J_0 \right| \ge 1/M, E_{n,\epsilon} \right)
$$

\n
$$
\stackrel{(1)}{\ge} P\left(\min_{k=1,\dots,K} \left| 1 + n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 \right| \ge 1/M + \epsilon, E_{n,\epsilon} \right)
$$

\n
$$
\ge P\left(\min_{k=1,\dots,K} \left| 1 + n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 \right| \ge 1/M + \epsilon \right) - P(E_{n,\epsilon}^c)
$$

\n
$$
\stackrel{(2)}{\ge} P\left(\max_{k=1,\dots,K} \left| 1 + n_k^{-1} \sum_{i \in \mathcal{I}_k} (\psi_i^a - J_0) / J_0 \right|^{-1} \le (1/M + \epsilon)^{-1} \right) - o(1)
$$

\n
$$
\stackrel{(3)}{\ge} 1 - o(1) - o(1)
$$

where (1) holds because $\min_{k=1,\dots,K}$ n_k^{-1} $\left| \sum_{i \in \mathcal{I}_k} (\hat{\psi}_i^a - \psi_i^a)/J_0 \right|$ $> -\epsilon$ conditional on the event $E_{n,\epsilon}$ and triangular inequality, (2) holds since $P(E_{n,\epsilon}^c) = o(1)$ due to Lemma [C.3](#page-0-0) (here I use $1/2 < 2 \min{\lbrace \varphi_1, \varphi_2 \rbrace}$ and $\varphi_1 \leq 1/2$), and (3) holds by the same arguments presented in the proof of Part 1 by using $(1/M + \epsilon)^{-1}$ instead of M; therefore, it is omitted.

Part 3: Consider $M > 1$ and $\tilde{M} > 1$ such that $\tilde{M} < ((M-1)/M)n^{1/2}$ and the following derivations,

$$
P\left(\left|n^{-1}\sum_{i=1}^{n}\psi_{i}^{a}/J_{0}\right|^{-1} > M\right) = P\left(\left|1+n^{-1}\sum_{i=1}^{n}(\psi_{i}^{a}-J_{0})/J_{0}\right| < 1/M\right)
$$

$$
\leq P\left(n^{-1/2}\sum_{i=1}^{n}(\psi_{i}^{a}-J_{0})/J_{0} < -((M-1)/M)n^{1/2}\right)
$$

$$
\leq P\left(n^{-1/2}\sum_{i=1}^{n}(\psi_{i}^{a}-J_{0})/J_{0} < -\tilde{M}\right)
$$

$$
\stackrel{(3)}{\equiv}\Phi(-\tilde{M}/\sigma_{a})+o(1)
$$

where (1) holds since $M > 1$, (2) holds by definition of \tilde{M} , and (3) holds by CLT as $n \to \infty$ (here, σ_a^2 is as in [\(C-2\)](#page-0-0)). To complete the proof, note that $\Phi(-\tilde{M}/\sigma_a) \to 0$

as $\tilde{M} \to \infty$.

Part 4: Define the event $E_{n,\epsilon} = \{ \mid \mathbf{E}_{n,\epsilon} \geq 0 \}$ $n^{-1} \sum_{i=1}^{n} (\hat{\psi}_i^a - \psi_i^a)/J_0$ $\langle \epsilon \rangle$. Now consider an small $\epsilon > 0$ and $M > 1$ such that $(1/M + \epsilon)^{-1} > 1$. Note that $P(E_{n,\epsilon}^c) = o(1)$ due to Lemma [C.2](#page-0-0) (here I use $\min\{\varphi_1,\varphi_2\} > 1/4$). The proof is completed by similar arguments presented in part 2 and part 3; therefore, it is omitted. \Box

References

DAVIDSON, J. (1994): Stochastic Limit Theory: An Introduction for Econometricians, Advanced Texts in Econometrics, Oxford University Press.