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Abstract

This paper studies the properties of debiased machine learning (DML) estimators

under a novel asymptotic framework, offering insights for improving estimator perfor-

mance in applications. DML is an estimation method suited to economic models in

which the parameter of interest depends on unknown nuisance functions that must

be estimated. It requires weaker conditions than previous methods while still ensuring

standard asymptotic properties. Existing theoretical results do not distinguish between

the two alternative versions of DML estimators, namely, DML1 and DML2. Under a

new asymptotic framework, this paper demonstrates that DML2 asymptotically domi-

nates DML1 in terms of bias and mean squared error, formalizing a previous conjecture

based on the simulation results of their relative performance. Additionally, this paper

provides guidance for improving DML2 performance in applications.
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1 Introduction

Debiased machine learning (DML) has become a popular method for estimating parameters

in economic models. DML is particularly suited to cases where the parameter of inter-

est depends on unknown nuisance functions that require estimation (Chernozhukov et al.,

2018). DML offers standard asymptotic properties (e.g., asymptotic normality and paramet-

ric convergence rate) under milder conditions compared to previous methods (e.g., Newey

(1994), Andrews (1994), Newey and McFadden (1994)). In practice, two versions of DML

—introduced by Chernozhukov et al. (2018)—can be used, DML1 and DML2. Both ver-

sions randomly divide the data into K equal-sized folds (samples) to estimate the nuisance

function, but they differ in how these estimates are used to construct an estimator for the

parameter of interest. While DML2 is believed to perform better than DML1 based on

the simulation results of their relative performance, DML1 and DML2 yield estimators with

the same asymptotic distribution when K remains fixed as the sample size n diverges to

infinity. This paper studies the properties of DML1 and DML2 under a novel asymptotic

framework, where the number of folds K diverges to infinity as n diverges to infinity. Under

this asymptotic framework, I show that DML2 offers theoretical advantages over DML1 in

terms of bias and mean squared error (MSE). This result suggests that practitioners should

adopt DML2 to achieve more accurate and reliable results. Additionally, it provides practical

recommendations for improving DML2 performance in applications, specifically conditions

under which setting K equals n minimizes asymptotic bias and MSE for DML2.

DML is useful in estimating a parameter θ0 that satisfies a moment condition of the

following form:

E[m(W, θ0, η0)] = 0 , (1.1)

wherem is a known moment function,W is an observed random vector, and η0 is an unknown

nuisance function. Examples of a parameter θ0 that can be identified by the moment condi-

tion (1.1) include several treatment effect parameters, such as the average treatment effect

(ATE), average treatment effect on the treated in difference-in-differences designs (ATT-

DID), local average treatment effect (LATE), weighted average treatment effects (w-ATE),

average treatment effect on the treated (ATT), and treatment effect coefficient in the partial

linear model (PLM), all of which have been studied in the literature on semi-parametric mod-

els (e.g., Robinson (1988), Robins et al. (1994), Hahn (1998), Hirano et al. (2003), Frölich

(2007), Farrell (2015), Chernozhukov et al. (2017), Sant’Anna and Zhao (2020), and Chang

(2020)). In all these examples, the moment function m is linear in a real-valued parameter

θ0, and the nuisance function η0 consists of conditional expectations, such as the propensity

score. This paper considers a setup that includes all these examples.
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DML relies on two ingredients to guarantee that the estimation of θ0 is as accurate as if

the true η0 had been used. The first ingredient is the Neyman orthogonality condition on the

moment function m. This condition reduces the sensitivity of the estimation of θ0 to errors

in the estimation of η0; see Remarks 3.1 and 3.2 for additional details. The second ingredient

is the cross-fitting procedure, a sample-splitting method used to construct estimators for η0.

This procedure and the Neyman orthogonality condition onm remove the “own observation”

bias, which arises when the same data are used to estimate both η0 and θ0.

DML1 and DML2 estimate θ0 by first randomly dividing the data into K equal-sized

folds, denoted by Ik for k = 1, . . . , K. For each fold Ik, an estimator η̂k of η0 is constructed

using all the data except the data in fold Ik. Then, DML1 first calculates preliminary

estimators θ̃k by solving the moment condition (1.1) within each fold Ik using the estima-

tor η̂k. It then combines the information across the folds by averaging the θ̃k’s to obtain

the proposed estimator for θ0. In contrast, DML2 first combines the information across

the folds by averaging moment conditions based on (1.1), where each fold uses estimates

η̂k, and then θ0 is estimated as the solution in θ of the average of moment conditions,

K−1
∑K

k=1

(
(n/K)−1

∑
i∈Ik m(Wi, θ, η̂k)

)
= 0.

Chernozhukov et al. (2018) conjectured that DML2 performs better than DML1 in small

samples based on the simulation results of their relative performance. However, the existing

asymptotic theory is insufficient for validating this conjecture, as it predicts that both DML1

and DML2 lead to estimators with the same limiting distribution, assuming that the number

of folds K remains fixed as the sample size n diverges to infinity.

This paper studies the properties of the estimators based on DML1 and DML2 under a

new asymptotic framework, aiming to understand which version has theoretical advantages.

I consider an asymptotic framework where the number of folds K → ∞ as n → ∞. This

framework offers a better description of finite sample situations where the practitioner im-

plementing DML desires to increase K to improve the precision of the estimators η̂k’s, which

use a fraction (K − 1)/K of the data. The use of alternative asymptotic approximations in-

corporating features of the finite sample problem is not new in the literature. An incomplete

list of similar and recent approaches in different econometric problems includes Cattaneo

and Jansson (2018), Bugni and Canay (2021), and Cai (2022), among many other authors.

This paper makes three contributions. First, it shows that DML2 offers theoretical

advantages over DML1 in terms of bias and MSE, thereby formalizing a previous conjecture

based on simulation evidence. More concretely, the first-order asymptotic distribution of

DML1 may exhibit an asymptotic bias, which is not the case for DML2. This asymptotic

bias is proportional to a parameter Λ that only depends on the moment function m, θ0,

and η0. When Λ is equal to zero, DML1 and DML2 exhibit similar first-order asymptotic
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properties. However, as Λ deviates from zero, DML1 becomes increasingly sensitive to large

K values regarding bias and MSE, while DML2 remains unaffected by the choice of K. For

several treatment effect parameters, such as ATE, ATT-DID, ATT, and PLM, Λ is equal to

zero, but for others, like LATE and w-ATE, it is typically nonzero. The distinction between

DML1 and DML2 through Λ emerges under the proposed asymptotic framework, providing

insights not captured by the existing asymptotic theory or simulation-based evidence.

Second, this paper provides conditions that guarantee the asymptotic validity of imple-

menting DML2 with any number of folds. Specifically, under these conditions, the first-order

asymptotic distribution of the estimators based on DML2 when K → ∞ as n→ ∞ is equal

to the existing first-order asymptotic theory where K is fixed. In particular, the number of

folds K can be set equal to the sample size n for DML2, obtaining the leave-one-out estima-

tor with the same asymptotic distribution. This result is particularly useful for practitioners.

It shows that dividing the data into many folds for DML2 implementation is asymptotically

valid, which is a common practice to improve the precision of the nuisance function estimates

η̂k’s; see Remark 2.3 for additional discussion on increasing the number of folds. Further-

more, the conditions guaranteeing the asymptotic validity for DML2 allow for the study of

higher-order properties for all the DML2 estimators, including the leave-one-out estimator.

Third, this paper provides conditions under which the leave-one-out estimator is asymp-

totically optimal in terms of bias and MSE among the estimators based on DML2. More

concretely, under these conditions, the absolute value of the leading term in the higher-

order asymptotic bias of the DML2 estimators decreases as K increases, with the minimum

achieved at K = n. Therefore, the leave-one-out estimator is optimal in terms of bias

among the estimators based on DML2. It also holds that the leave-one-out estimator is

optimal with respect to the second-order asymptotic MSE whenever certain data-dependent

conditions hold, making it the most efficient choice for practitioners.

Finally, the previous results offer several lessons for practitioners. First, DML2 is the

recommended option for DML implementation, especially in small-sample situations when

increasing the number of folds is desired to improve the precision of the estimators η̂k.

Second, choosing the number of folds K equal to the sample size n is optimal for DML2

implementation to reduce the asymptotic bias, where the asymptotic bias refers to the leading

term of the higher-order asymptotic bias of the DML2 estimator. Third, choosing K = n is

optimal for the asymptotic accuracy of DML2 to estimate θ0 when certain data-dependent

condition holds, where the asymptotic accuracy refers to the second-order asymptotic MSE.

The previous two lessons reveal that the common recommendations of choosing 5, 10 or 20

folds for the cross-fitting procedure in DML (e.g., Ahrens et al. (2024a,b), Bach et al. (2022),

and Bach et al. (2024)) are suboptimal in terms of the asymptotic bias and the asymptotic
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accuracy. The next lesson concerns the relative loss a practitioner can face by choosing a

K that is different from the optimal choice. Fourth, if the optimal choice for minimizing

the asymptotic bias and second-order asymptotic MSE is K = n, then choosing K = 10

to implement DML2 guarantees that the maximum relative loss compared to the optimal

choice in terms of the asymptotic bias and the asymptotic accuracy is around 10% and 5%,

respectively.

The conditions provided in this paper include stronger assumptions about the estimators

of η0 compared to the existing first-order asymptotic theory of DML to address two challeng-

ing situations. The first concerns the asymptotic properties of the estimators of θ0, as the

proof strategy for fixed K cannot be directly adapted to the case where K → ∞ as n→ ∞.

The second challenge involves analyzing the higher-order properties of the DML2 estimator

when K → ∞ as n→ ∞, which requires additional structure on the estimators of η0.

Related Literature

This paper contributes to the growing literature on DML, where different estimators have

been proposed based on DML for addressing semi-parametric estimation problems with-

out requiring strong conditions on the estimators of η0 (e.g., without invoking a Donsker

class assumption). An incomplete list in this literature includes Chernozhukov et al. (2017),

Chernozhukov et al. (2018), Chernozhukov et al. (2022a),Chernozhukov et al. (2022b,c), Se-

menova and Chernozhukov (2021), Semenova (2023a,b), Escanciano and Terschuur (2023),

Rafi (2023), Cheng et al. (2023), Ji et al. (2023), Noack et al. (2024), Fava (2024), Kennedy

et al. (2024), and Jin and Syrgkanis (2024). All these papers used DML2 with some excep-

tions, such as Chernozhukov et al. (2017), Ji et al. (2023), and Cheng et al. (2023), which

used DML1.1 Except for Kennedy et al. (2024) and Jin and Syrgkanis (2024), all these papers

derived the first-order asymptotic theory for their estimators, assuming that K remains fixed

as n → ∞. Kennedy et al. (2024) and Jin and Syrgkanis (2024) used a structure-agnostic

framework to show the optimality of estimators based on DML. In contrast, I study the

properties of estimators based on DML1 and DML2 when K → ∞ as n→ ∞, showing that

DML2 offers theoretical advantages over DML1 and providing conditions under which the

leave-one-out estimator, defined as DML2 using K = n, is optimal in terms of asymptotic

bias and MSE. To the best of my knowledge, this literature does not provide theoretical

results on selecting K, which is also addressed as part of my results.

This paper also contributes to the literature on double-robust estimators, which includes

Robins et al. (1994), Robins and Rotnitzky (1995), Scharfstein et al. (1999), Farrell (2015),

1In many of these papers, such as Rafi (2023) and Semenova (2023a), DML1 and DML2 are numerically
equivalent; see Remark 2.1 for an explanation.
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Sant’Anna and Zhao (2020), Chang (2020), Callaway and Sant’Anna (2021), Rothe and

Firpo (2019), and Singh and Sun (2024), among others. Except Rothe and Firpo (2019),

all these papers studied first-order asymptotic theory for their estimators that remain con-

sistent even if some components of η0 are misspecified. Rothe and Firpo (2019) studies the

higher-order properties of double-robust estimators in a missing-data setting, where η0 is

estimated by a leave-one-out approach. My results complement their findings. First, the

DML versions of the double-robust estimators allow a flexible estimation of the components

of η0 (e.g., nonparametric methods). Second, this paper presents the higher-order properties

of estimators based on DML2. Third, among these DML2 estimators, the leave-one-out esti-

mator is optimal in terms of bias and MSE whenever certain conditions hold. Interestingly,

the leave-one-out estimator in the presented paper is the estimator studied in Rothe and

Firpo (2019).

More broadly, this paper contributes to the literature on semi-parametric models, which

has a long tradition in econometrics and statistics (e.g., Bickel (1982), Robinson (1988),

Newey (1990), Andrews (1994), Newey and McFadden (1994), Newey (1994), Linton (1995),

and Bickel and Ritov (2003)). Many of the papers in this literature provide conditions to

study the estimators based on a plug-in approach (i.e., the same data are used to estimate

η0 and θ0). In contrast, I provide conditions for studying the (higher-order) properties of

estimators based on DML2.

Structure of the rest of the paper

The remainder of the paper is organized as follows. Section 2 describes the setup, notation,

and estimators based on DML. Section 3 presents the formal results: Section 3.2 states

the first-order asymptotic properties of the DML1 and DML2 estimators when K → ∞ as

n → ∞, and Section 3.3 finds the higher-order properties of the DML2 estimators when

K → ∞ as n → ∞. Section 4 presents the lessons for practitioners based on the formal

results obtained in Section 3. Section 5 presents the Monte-Carlo simulations for ATT-DID

(Sant’Anna and Zhao (2020)) and LATE (Hong and Nekipelov (2010)), using estimators

based on DML1 and DML2 to examine the relevance of my asymptotic analysis in finite

samples. Finally, Section 6 presents concluding remarks. Appendix A presents additional

examples and results. Appendix B collects the proof of the main results. For brevity, the

proofs of the auxiliary results appering in Appendix C are placed in the Online Appendix.2

2https://www.amilcarvelez.com/working paper/DML/online appendix.pdf
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2 Setup and Notation

This section presents the setup for the parameter of interest and the estimators based on

DML. It contains examples previously studied in the literature that illustrate the setup. It

also states the results of the existing asymptotic theory.

The parameter of interest is θ0 ∈ Θ ⊆ R and satisfies the following moment condition:

E[m(W, θ0, η0(X))] = 0 , (2.1)

where m : W×Θ×T → R is a known moment function, W ∈ W ⊆ Rdw is a random vector

with distribution F0, and X ∈ X ⊆ Rdx is a sub-vector of W . The nuisance parameter

η0 : X → T ⊆ Rp is an unknown function of the covariates X.

This paper considers moment functions m that are linear in the parameter of interest:

m(W, θ, η) = ψb(W, η)− ψa(W, η)θ , (2.2)

where ψb and ψa are functions that satisfy conditions specified in Assumption 3.1, which

includes the identification condition E[ψa(W, η0(X))] ̸= 0 and guarantees a Neyman orthog-

onality condition,

E [∂ηm(W, θ0, η0(X)) | X] = 0 , a.e.

where ∂ηm denotes the partial derivative of the function m with respect to the values of η

and ∂ηm(W, θ0, η0(X)) is the ∂ηm evaluated at η = η0(X).

A wide range of parameters of interest can be identified through moment conditions such

as (2.1) using a moment function like (2.2). Examples of θ0 include the average treatment

effect (Example 2.1), the average treatment effect on the treated in difference-in-differences

designs (Example 2.2), and the local average treatment effect (Example 2.3), among others.

Further examples are presented in Section A.1 of Appendix A.

Example 2.1 (Average Treatment Effect). Let A ∈ {0, 1} denote a binary treatment sta-

tus, Y (a) denote the potential outcome under treatment a ∈ {0, 1}, X denote a vector of

covariates, and

Y = AY (1) + (1− A)Y (0)

denote the observed outcome. The available data is modeled by the vector W = (Y,A,X).

The parameter of interest is

θ0 = E[Y (1)− Y (0)] ,

which is the expectation of the treatment effect when the treatment is mandated across the
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entire population, also known as the ATE. A standard assumption used to identify θ0 is the

selection-on-observables assumption,

(Y (1), Y (0)) ⊥ A | X .

Under the selection-on-observables assumption, the ATE can be identified by a moment

condition such as (2.1) using a moment function like (2.2), which is defined by

ψb(W, η) = η1 − η2 + A(Y − η1)η3 − (1− A)(Y − η2)η4 ,

ψa(W, η) = 1 ,

for η ∈ R4, and where the nuisance parameter η0(X) has four components:

η0,1(X) = E[Y | X,A = 1] ,

η0,2(X) = E[Y | X,A = 0] ,

η0,3(X) = (E[A | X])−1 ,

η0,4(X) = (E[1− A | X])−1 .

This moment function corresponds to the augmented inverse propensity weighted (AIPW)

estimator (Robins et al. (1994), Scharfstein et al. (1999)). It also appears as the efficient

influence function for the ATE in Hahn (1998) and Hirano et al. (2003).

Example 2.2 (Difference-in-Differences). This example considers the average treatment ef-

fect on the treated in difference-in-differences research designs with two periods and panel

data, as studied in Sant’Anna and Zhao (2020). Let A ∈ {0, 1} denote a binary treat-

ment status on the post-treatment period, Y1(a) denote the potential outcome on the post-

treatment period under treatment status a ∈ {0, 1}, Y0 denote the outcome of interest in a

pre-treatment period, X denote a vector of covariates, and

Y1 = AY1(1) + (1− A)Y1(0)

denote the observed outcome in the post-treatment period. The available data is modeled

by the vector W = (Y0, Y1, A,X). The parameter of interest is

θ0 = E[Y1(1)− Y1(0) | A = 1] ,

which represents the treatment effect for the treated group in the post-treatment period,

also known as ATT-DID. Sant’Anna and Zhao (2020) used the following conditional parallel
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trend assumption,

E[Y1(0)− Y0 | X,A = 1] = E[Y1(0)− Y0 | X,A = 0] ,

to identify the ATT-DID by a moment condition, such as (2.1), using a moment function

like (2.2), which is defined by

ψb(W, η) = A(Y1 − Y0 − η1) + (1− A)(1− η2)(Y1 − Y0 − η1) ,

ψa(W, η) = A ,

for η ∈ R2, and where the nuisance parameter η0(X) has two components:

η0,1(X) = E[Y1 − Y0 | X,A = 0]

η0,2(X) = (E[1− A | X])−1 .

This moment function is the efficient influence function for the ATT-DID under the condi-

tions in Sant’Anna and Zhao (2020).

Example 2.3 (Local Average Treatment Effect). This example considers a framework where

individuals can decide their treatment status as in Imbens and Angrist (1994) and Frölich

(2007). Let Z ∈ {0, 1} denote a binary instrumental variable (e.g., treatment assignment),

D(z) denote potential treatment decisions under the intervention z ∈ {0, 1}, and assume the

observed treatment decision is given by

D = ZD(1) + (1− Z)D(0) .

Let X denote a vector of covariates, Y (d) denote the potential outcome under treatment

decision d ∈ {0, 1}, and Y = DY (1) + (1 − D)Y (0) denote the observed outcome. The

available data is modeled by the vector W = (Y, Z,D,X). The parameter of interest is

θ0 = E[Y (1)− Y (0) | D(1) > D(0)] ,

which is the expected treatment effect for the sub-population that complies with the assigned

treatment, also known as LATE. A sufficient assumption for identification is the following

selection-on-observables assumption,

(Y (1), Y (0), D(1), D(0)) ⊥ Z | X .
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Using this assumption and similar assumptions as in Frölich (2007), Singh and Sun (2024)

identified the LATE by a moment condition, such as (2.1), using a moment function like

(2.2), which is defined by

ψb(W, η) = η1 − η2 + Z(Y − η1)η5 − (1− Z)(Y − η2)η6

ψa(W, η) = η3 − η4 + Z(D − η3)η5 − (1− Z)(D − η4)η6

for η ∈ R6, and where the nuisance parameter η0(X) has six components:

η0,1(X) = E[Y | X,Z = 1] ,

η0,2(X) = E[Y | X,Z = 0] ,

η0,3(X) = E[D | X,Z = 1] ,

η0,4(X) = E[D | X,Z = 0] ,

η0,5(X) = (E[Z | X])−1 ,

η0,6(X) = (E[1− Z | X])−1 .

This moment function appears in Frölich (2007) as the efficient influence function for the

LATE. This moment function corresponds to the estimators proposed in Tan (2006).

2.1 Estimators based on DML

Consider the goal of estimating θ0 using a random sample {Wi : 1 ≤ i ≤ n} drawn from the

distribution F0. The parameter θ0 based on (2.1) and (2.2) can be identified as a ratio of

expected values,

θ0 =
E[ψb(W, η0(X))]

E[ψa(W, η0(X))]
. (2.3)

Accordingly, an ideal estimator for θ0 is defined by replacing the expected values in (2.3)

with sample analogs. That is,

θ̂∗n =
n−1

∑n
i=1 ψ

b(Wi, ηi)

n−1
∑n

i=1 ψ
a(Wi, ηi)

, (2.4)

where ηi = η0(Xi) is the value of the nuisance parameter η0 for the observation i, and Xi

is a sub-vector of Wi. However, the values of the ηi’s are unknown. As a result, the oracle

estimator θ̂∗n is infeasible. For this reason, it is common to calculate first estimates η̂i of ηi

that can be used later to compute an estimator of θ0.

For instance, an estimator η̂ of η0 can be obtained by using all the data, and then an esti-
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mator of θ0 can be defined by replacing ηi by the estimates η̂i in (2.4), where η̂i = η̂(Xi). An

estimator of θ0 based on this approach is known as the plug-in estimator, and the conditions

under which it has standard properties (e.g., asymptotic normality and parametric conver-

gence rates) have been studied in the literature on semi-parametric models (e.g., Andrews

(1994), Newey (1994), Newey and McFadden (1994)). However, this approach is sensitive to

the “own observation” bias, which arises when the same data are used to estimate both η0

and θ0 (Newey and Robins (2018)); see also Remark 3.5. To attenuate the first-order effect of

this bias on the plug-in estimators, stronger conditions are required on the estimator η̂ (e.g.,

Donsker conditions). In contrast, DML —the approach considered in this paper— relies

on general and simple conditions, such as a certain mean-square consistency condition, to

obtain the standard properties (Chernozhukov et al. (2018), Chernozhukov et al. (2022a)).

In what follows, I explain how DML estimates η0 and θ0 by relying on cross fitting to

avoids the “own observation” bias.

Estimates of the Nuisance Parameter

DML proposes to calculate the estimates η̂i of ηi using a cross-fitting procedure, which is a

form of sample-splitting. This procedure has two steps and implicitly assumes that n can be

divided by K:

1. Sample splitting : Randomly split the indices into K equal-sized folds Ik, i.e., ∪K
k=1Ik =

{1, 2, . . . , n}. The number of observations in fold Ik is denoted nk = n/K.3

2. Nuisance Parameter Estimates : For each fold Ik, the estimates η̂i of ηi are defined by

η̂i = η̂k(Xi) , ∀i ∈ Ik , (2.5)

where η̂k(·) is an estimator of the nuisance parameter η0(·) using {Wi : i /∈ Ik}, which
is all the data except the ones with indices on the fold Ik. All the estimates η̂i are

calculated by repeating the process for all the k = 1, . . . , K.

Both DML estimators use these estimates η̂i, but they differ in how they combine infor-

mation across the different folds defined above. I explain this next.

3When n is not divisible by K, the number of observations in some folds will be ⌊n/K⌋ while in others
⌊n/K⌋+ 1, where ⌊n/K⌋ is the greatest integer less than or equal to n/K.
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DML1

The estimator based on DML1 first calculates preliminary estimators θ̃k by solving the

moment condition (1.1) within each fold Ik using the estimates η̂i,

θ̃k solve n−1
k

∑
i∈Ik

m(Wi, θ, η̂i) = 0 ,

it then combines the information across the folds by averaging the θ̃k’s to obtain the proposed

estimator for θ0,

θ̂n,1 = K−1

K∑
k=1

θ̃k . (2.6)

Explicit expressions for θ̃k can be obtained since the moment function m is as in (2.2),

θ̃k =
n−1
k

∑
i∈Ik ψ

b(Wi, η̂i)

n−1
k

∑
i∈Ik ψ

a(Wi, η̂i)
, ∀ k = 1, . . . , K .

Note that θ̃k is similar to (2.4) but using only observations in the fold Ik and the estimates

η̂i instead of ηi.

DML2

In contrast, the estimator based on DML2 first combines the information across the folds Ik

by averaging the sample analog of moment conditions like (2.1) using the estimates η̂i, and

then estimates θ0 by solving the average of moment conditions,

θ̂n,2 solve K−1

K∑
k=1

(
n−1
k

∑
i∈Ik

m(Wi, θ, η̂i)

)
= 0 .

An explicit expression for θ̂n,2 is obtained by using that the moment function m is as in (2.2),

θ̂n,2 =
n−1

∑n
i=1 ψ

b(Wi, η̂i)

n−1
∑n

i=1 ψ
a(Wi, η̂i)

. (2.7)

Note that θ̂n,2 is similar to (2.4) but using the estimates η̂i instead of ηi.

Remark 2.1. The estimators based on DML1 and DML2 can be equal under certain con-

ditions. If ψa(Wi, η̂i) has zero variance (e.g., ψa is a constant ψa
0 as in Example 2.1) and the

K-fold partition {Ik : 1 ≤ k ≤ K} divides the data into exactly K subsets with equal size,

12



then both DML1 and DML2 estimators defined in (2.6) and (2.7) are equal. In particular,

θ̂n,1 = K−1

K∑
k=1

n−1
k

∑
i∈Ik ψ

b(Wi, η̂i)

ψa
0

=
n−1

∑n
i=1 ψ

b(Wi, η̂i)

ψa
0

= θ̂n,2 .

Therefore, the DML1 and DML2 estimators for the ATE (Example 2.1) are numerically the

same when the data are divided in exactly K folds. In contrast, if ψa(Wi, η̂i) has positive

variance, then θ̂n,1 ̸= θ̂n,2 in general. This occurs in all the other examples.

Remark 2.2 (Oracle version of DML). The oracle version of the DML1 estimator depends

on random splitting, while this is not the case for the oracle version of the DML2. By

oracle version, I refer to the case where the DML estimators are calculated assuming perfect

knowledge of the ηi. More concretely, the oracle version of the estimator based on DML1 is

defined as

θ̂∗n,1 = K−1

K∑
k=1

n−1
k

∑
i∈Ik ψ

b(Wi, ηi)

n−1
k

∑
i∈Ik ψ

a(Wi, ηi)
, (2.8)

which depends on sample splitting, i.e., the K-fold partition {Ik : 1 ≤ k ≤ K}. In contrast,

the oracle version of the estimator based on DML2 is defined as

θ̂∗n,2 =
n−1

∑n
i=1 ψ

b(Wi, ηi)

n−1
∑n

i=1 ψ
a(Wi, ηi)

, (2.9)

which does not depend on sample splitting. Moreover, the oracle version of the DML2

estimator θ̂∗n,2 is exactly the same as the one defined in (2.4), but this is not typically the

case for the oracle version of the DML1 estimator θ̂∗n,1 with some exceptions. When ψa(Wi, ηi)

has zero variance, then both θ̂∗n,1 and θ̂∗n,2 are equal to the one defined in (2.4).

Remark 2.3. Simulation evidence has reported that increasing the number of folds K

improves the performance of the estimators based on DML2 in terms of bias and mean

squared error (Ahrens et al. (2024a,b) and Chernozhukov et al. (2018)). The cross-fitting

procedure producesK possible different estimators η̂k(·) for the nuisance parameter η0(·) and
each of them uses a fraction (K− 1)/K of the data. For instance, these estimators use 50%,

80%, and 90% of the data when K is 2, 5, and 10, respectively. Therefore, the accuracy of

these estimators increases with the values of K. However, it is theoretically unknown if the

improvement in the accuracy of the estimation of η0 translated into more precise estimates

for θ0.
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Previous Results

Under some conditions (including K fixed as n → ∞), Chernozhukov et al. (2018) showed

that both DML estimators θ̂n,1 and θ̂n,2 have the same asymptotic distribution,

√
n
(
θ̂n,j − θ0

)
d→ N(0, σ2) , (2.10)

where the variance of the asymptotic distribution is given by

σ2 =
E[m(W, θ0, η0(X))2]

E[ψa(W, η0(X))]2
, (2.11)

which only depends on the moment function m, the true nuisance parameter η0, and the

data distribution F0. This result implies that the existing theoretical framework cannot

distinguish between estimators based on DML1 and DML2, as discussed in the introduction.

Moreover, this asymptotic theory provides no direct guidance for implementing DML.

The proof of (2.10) relies on a first-order equivalent condition. More concretely, both

DML estimators θ̂n,1 and θ̂n,2 are first-order equivalent to the oracle estimator θ̂∗n, which

means
√
n
(
θ̂n,j − θ̂∗n

)
p→ 0 , j = 1, 2 . (2.12)

This result is particularly useful since it implies that the estimation of θ0 using DML is as

accurate as if the true η0 had been used.

The first-order equivalence condition (2.12) was obtained when K is fixed as n→ ∞ by

using (i) a Neyman orthogonality condition (which is necessary condition to obtain (2.12);

see Remark 3.1) and (ii) a conditional independence property due to construction of the

estimates η̂i using the cross-fitting procedure (e.g., conditional on Xi, the estimation error

η̂i−ηi andWi are independent). Importantly, the proof technique presented in Chernozhukov

et al. (2018) relies on K being fixed as n→ ∞.

Although the existing asymptotic theory shows that DML1 and DML2 are asymptoti-

cally equivalent, DML2 is conjectured to perform better than DML1 based on the simulation

results of their relative performance. To investigate whether DML2 offers theoretical advan-

tages, this paper considers an asymptotic framework where K → ∞ as n → ∞ in the next

section. There, it will be shown that the accuracy (bias and MSE) of DML1 is sensitive

to K, while this is not the case for DML2, implying that DML2 asymptotically dominates

DML1 in terms of bias and MSE. Furthermore, it presents conditions under which setting

K = n minimizes bias and MSE for the DML2 estimators, suggesting that practitioners

should implement DML2 with K = n in settings well-approximated by these conditions.
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3 Main Results

This section presents the asymptotic properties of estimators based on DML1 and DML2

when K → ∞ as n→ ∞.

3.1 Assumptions

This section presents and discusses the conditions required for the moment function and the

nuisance function estimators. Assumption 3.1 specifies the formal conditions on the moment

function m defined in (2.2), including a (strong) Neyman orthogonality condition, while

Assumption 3.2 provides the details of the stochastic expansion satisfied by the nuisance

parameter estimators. The technical conditions in parts (c) and (d) of Assumptions 3.2 are

stronger than in the existing first-order asymptotic theory of DML to address the technical

difficulties that arise when K → ∞ as n→ ∞. Assumption 3.3 presents joint conditions on

the moment function and the nuisance parameter estimators to conduct appropriate analysis

of the leading terms of the higher-order bias and variance of the DML2 estimators.

The next assumption imposes conditions on the known functions ψa and ψb, which define

the moment function m. These conditions are presented below and depend on the following

finite positive constants M , C0, C1, C2, and C3.

Assumption 3.1. The functions ψa and ψb are three-times continuously differentiable on

η ∈ T ⊆ Rp and satisfy for z = a, b,

(a) |E [ψa(Wi, ηi)] | > C0.

(b) E [∂ηψ
z(Wi, ηi) | Xi] = 0 , a.e.

(c) E [ψz(Wi, ηi)
4] < M and E [||∂ηψz(Wi, ηi)||4] < M .

(d) ||E
[
(∂ηψ

z(Wi, ηi))(∂ηψ
z(Wi, ηi))

⊤ | Xi

]
||∞ ≤ C1.

(e) supη∈T ||∂2ηψz(Wi, η)||∞ ≤ C2 and supη∈T ||∂3ηψz(Wi, η)||∞ ≤ C3 for z = a, b.

where ∂ηψ
z(Wi, ηi) is the partial derivative of ψz with respect to η evaluated at ηi = η0(Xi)

and the || · ||∞-norm is the maximum of the absolute value of the matrix entries.

Part (a) of Assumption 3.1 is an identification condition for the parameter θ0. It implies

that θ0 can be written as a ratio of expected values as in (2.3). Part (b) of Assumption 3.1

guarantees that a (strong) Neyman orthogonality condition holds for the moment function

m defined in (2.2). That is,

E [∂ηm(Wi, θ0, ηi) | Xi] = 0 , a.e. (3.1)
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The Neyman orthogonality condition is a necessary condition to guarantee first-order equiva-

lence conditions, such as the one presented in (2.12); see Remark 3.1 for a further explanation.

It has been used to remove the effects of the estimation of the nuisance parameter η0 on the

asymptotic distribution of estimators for θ0. Many estimators of the treatment parameters

of interest have associated moment functions that satisfy this condition, including the ones

in Examples 2.1 (ATE), 2.2 (ATT-DID), and 2.3 (LATE). Weaker forms of this condition

have been used in the literature for a similar purpose; see, for instance, Assumption 5.1 in

Belloni et al. (2017), Assumption 3.1 in Chernozhukov et al. (2018), and Equation (2.12) in

Andrews (1994). The Neyman orthogonality condition is helpful in studying the asymptotic

properties of DML; however, it is not a restrictive requirement. Under certain conditions, it

is possible to transform a moment function into a moment function that satisfies a Neyman

orthogonality condition; see Remark 3.2 for additional details.

Part (c) of Assumption 3.1 is a regularity condition. It is used (i) to obtain a first-order

equivalence property of the DML estimators and their oracle versions in Section 3.2 and

(ii) to guarantee that the high-order asymptotic approximation and quantities that appear

in Section 3.3 are well-defined. Parts (d) and (e) of Assumption 3.1 are mild technical

conditions. It is possible to set C3 = 0 when the moment function is a quadratic polynomial

in η (the values of the nuisance parameter). This occurs when a doubly-robust moment

condition defines the parameter of interest; see Theorem 4 in Chernozhukov et al. (2022a).

All the examples presented in Section 2 and in Appendix A.1 satisfy Assumption 3.1.

Remark 3.1. Without suitable assumptions about the moment functions, a first-order

equivalent condition between a feasible estimator and its oracle version (as in (2.12)) is

not true in general. To see this, consider the following example. Suppose ψa(W, η) = 1 and

ψb(W, η) is a linear function in η. In addition, assume that the nuisance parameter η0 is

an unknown finite-dimensional parameter. Consider the estimator θ̂n = n−1
∑n

i=1 ψ
b(Wi, η̂)

and its oracle version θ̂∗n = n−1
∑n

i=1 ψ
b(Wi, η0), where η̂ is an estimator of η0 such that

n1/2(η̂ − η0)
d→ N(0,Σ) and Σ is an invertible matrix. It can be shown that

n1/2(θ̂n − θ̂∗n) = n1/2(η̂ − η0)
⊤E[∂ηm(Wi, θ0, η0)] + op(1) ,

which implies n1/2(θ̂n− θ̂∗n) is op(1) if and only if E[∂ηm(Wi, θ0, η0)] = 0. In other words, the

first-order equivalence condition in this example holds if and only if a Neyman orthogonality

condition as in (3.1) holds.

Remark 3.2. Moment functions satisfying a Neyman orthogonality condition can be ob-

tained by adding an adjustment term to the original moment functions. Specifically, under

certain conditions on the nuisance parameter η0, there exists α0 (function of covariates X)
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and ϕ(W, θ, η, α) (adjustment term) such that

• E[ϕ(W, θ, η0, α0)] = 0

• the augmented moment function m̃(W, θ, η, α) = m(W, θ, η) + ϕ(W, θ, η, α) satisfies a

Neyman orthogonality condition

E
[
∂η̃m̃(W, θ0, η̃)|η̃=η̃0(X) | X

]
= 0 , a.e.

where η̃0(X) = (η0(X), α0(X)).

The augmented term ϕ is an influence function of a particular parameter. It can be obtained

using methods previously developed in the literature, such as Ichimura and Newey (2022)

and Newey (1994). Recently, Chernozhukov et al. (2022a) used the approach of Ichimura

and Newey (2022) and estimators based on DML2 to propose debiased GMM estimators.

Stochastic Expansion for the Nuisance Parameter Estimator

The next assumption imposes additional structure on the nuisance parameter estimators

compared to the existing DML framework. These stronger conditions have a twofold purpose:

addressing the technical challenges that arise when K → ∞ as n → ∞ in Section 3.2 and

allowing the analysis of higher-order properties in Section 3.3.

To fix ideas, consider an estimator η̂ of η0 at a given point x such that (i) n−2φ1 is the

convergence rate of the variance of η̂ and (ii) n−φ2 is the convergence rate of the bias of η̂.

To have more information about the variance and bias part, the next assumption imposes

an asymptotic linear representation for both parts. More concretely, it takes as given the

positive constants φ1 and φ2 and assumes the existence of two sequences of functions δn (for

the variance part) and bn (for the bias part) that satisfy the asymptotic linear representation.

Additional assumptions on these functions are imposed and depend on the following finite

positive constantsM1, Cδ, and Cb, and a sequence of positive constants τn converging to zero

(i.e., τn = o(1)). Before continuing, let n0 = ((K − 1)/K)n be the number of observations

in the sample {Wi : i /∈ Ik} used by η̂k(·) to estimate η0(·).

Assumption 3.2. There exist two sequences of functions δn0 : W × X → Rp and bn0 :

X × X → Rp, such that

(a) For any given x ∈ X and k ∈ {1, . . . , K},

η̂k(x)− η0(x) = n
−1/2
0

∑
ℓ/∈Ik

n−φ1

0 δn0(Wℓ, x) + n−1
0

∑
ℓ/∈Ik

n−φ2

0 bn0(Xℓ, x) + n
−2min{φ1,φ2}
0 R̂(x) ,
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where R̂(x) = Op(1), E[δn0(Wℓ, x) | Xℓ] = 0 a.e., and E [||δn0(Wℓ, x)||2] > Cδ.

(b) For any i ̸= j,

(b.1) E [E[||δn0(Wj, Xi)||2 | Xi]
2] ≤M1 and E

[
E
[
||n−φ2

0 bn0(Xj, Xi)||2 | Xi

]2] ≤ n
2(1−2φ1)
0 τn0.

(b.2) E [||δn0(Wj, Xi)||2s] < n
(s−1)(1−2φ1)
0 M1 for s = 1, 2 .

(b.3) E [||E [bn0(Xj, Xi) | Xi] ||4] ∈ (Cb,M1).

(b.4) E
[
||n−φ2

0 bn0(Xj, Xi)||2s
]
< n

(2s−1)(1−2φ1)
0 τn0 for s = 1, 2.

(c) E[||R̂(Xi)||2] = O(1).

(d) n−1
∑n

i=1 ||R̂(Xi)||4 = Op(n
4min{φ1,φ2}).

Part (a) of Assumption 3.2 present a stochastic expansion for the estimation error of

the nuisance parameter estimator η̂k(x). It assumes that this approximation has two terms

that model the variance (n
−1/2
0

∑
ℓ/∈Ik n

−φ1

0 δn0(Wℓ, x)) and bias (n−1
0

∑
ℓ/∈Ik n

−φ2

0 bn0(Xℓ, x))

components of the estimator η̂k(x). Nonparametric kernel estimators satisfy this asymp-

totic expansion under mild regularity conditions on the nuisance parameter η0. Appendix

A.3 presents δn0 and bn0 for a class of nonparametric kernel estimators and the nuisance

parameters η0 (conditional expectations) that appear in the examples.

Part (b) of Assumption 3.2 presents regularity conditions on δn0(Wj, Xi) and bn0(Xj, Xi)

for j ̸= i. Part (b.1) is helpful to establish that the leading terms in the stochastic ap-

proximation for the estimation error of η̂k have a finite fourth moment; see Lemma C.1 in

Appendix C. Part (b.2) and the condition E [||δn0(Wℓ, x)||2] > Cδ in part (a) guarantee that

the variance of the nuisance parameter estimator has a convergence rate O(n−2φ1), while

part (b.3) establishes that the bias term has a convergence rate O(n−φ2). Finally, part

(b.4) considers additional regularity conditions. These regularity conditions can be verified

for Nadaraya-Watson estimators and the nuisance parameters η0 (conditional expectations)

that appear in the examples.

Parts (c) and (d) of Assumption 3.2 are helpful high-level conditions to establish results in

Section 3.2, where the asymptotic framework considers K → ∞ as n→ ∞. This assumption

can be verified for Nadaraya-Watson estimators under additional suitable conditions on the

nuisance parameter η0 (conditional expectations) that appear in the examples. Part (c)

is sufficient to guarantee that E[||η̂i − ηi||2] is finite and has convergence rate O(n−2φ1) +

O(n−2φ2). Part (d) is sufficient to guarantee that n−1
∑n

i=1 ||η̂i − ηi||4 is Op(n
−4min{φ1,φ2}).

Both intermediate results are formally established in Lemma C.4 in Appendix C.
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Stochastic Expansion for the DML2 Estimator

Finally, the next assumption imposes joint conditions on the functions δn0 and bn0 , defined

in Assumption 3.2, and the moment functions m, defined in (2.2). These conditions are

important to (i) derive a valid stochastic expansion for the estimators based on DML2 and

(ii) conduct an appropriate analysis of the leading terms of the higher-order bias and variance

of the DML2 estimator. Before continuing, define b̃n0(Xi) = E [bn0(Xj, Xi) | Xi] for j ̸= i.

Assumption 3.3.

(a) The following limits exist and are finite,

Gδ = lim
n0→∞

E
[
E
[
δn0(Wj, Xi)

⊤ (∂2ηm(Wi, θ0, ηi)
)
δn0(Wℓ, Xi) | Wj,Wℓ

]2]
/E[ψa(Wi, ηi)]

2,

(3.2)

Fδ = lim
n0→∞

1

2
E
[
δn0(Wj, Xi)

⊤ (∂2ηm(Wi, θ0, ηi)
)
δn0(Wj, Xi)

]
/E[ψa(Wi, ηi)] (3.3)

Fb = lim
n0→∞

1

2
E
[
b̃n0(Xi)

⊤ (∂2ηm(Wi, θ0, ηi)
)
b̃n0(Xi)

]
/E[ψa(Wi, ηi)] , (3.4)

Gb = lim
n0→∞

E
[
m(Wj, θ0, ηj)δn0(Wj, Xi)

⊤ (∂2ηm(Wi, θ0, ηi)
)
b̃n0(Xi)

]
/E[ψa(Wi, ηi)]

2 ,

(3.5)

(b) Gδ > 0, Fδ + Fb ̸= 0, and Gb ̸= 0.

Part (a) of Assumption 3.3 is a regularity condition. Assumptions 3.1 and 3.2 ensure

that the sequences on the right-hand side of (3.2)–(3.5) are bounded, implying that, if the

limit exists, it is finite. Whether the limits in (3.2)–(3.5) exist depends on the estimator of

the nuisance function, η0. For instance, this can be verified for Nadaraya-Watson estimators

—using the same kernel as n0 → ∞— under additional suitable conditions on η0. The limit

may not exist when η0 is estimated by two different types of estimators based on n0, which

is the number of observations in the estimation of η0. For instance, if the estimator of η0

uses a given kernel when n0 is odd and a different one when n0 is even, the limit can exist

for each subsequence, but they may be different.

Part (b) of Assumption 3.3 is a sufficient condition to conduct an appropriate analysis of

the leading terms of the higher-order bias and variance of the DML2 estimators in Section 3.3.

Determining whether part (b) of Assumption 3.3 hold may require a case-by-case analysis,

as it depends on the interaction between the second-order partial derivatives of the moment

function m with respect to η and the estimator of the nuisance function. Importantly, a

necessary condition is that the moment function m is a nonlinear function on η, i.e., the
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matrix of second-order partial derivatives of m with respect to η is different than zero. For

Examples 2.1 (ATE), 2.2 (ATT-DID), A.2 (ATT), and A.3 (PLM), it can be verified that

Gδ > 0, |Fδ + Fb| > 0, and Gb ̸= 0 when η0 is estimated using Nadaraya-Watson estimators.

3.2 A First-Order Asymptotic Theory when K increases

This section presents the asymptotic distribution of the estimators based on DML1 and

DML2 in an asymptotic framework where the number of folds K increases with the sample

size n. Specifically, it shows that DML1 may exhibit a first-order asymptotic bias (i.e.,

its asymptotic distribution may not be centered at zero), which is not the case for DML2.

These results show that DML2 offers theoretical advantages over DML1 in terms of bias

and MSE. Furthermore, the conditions used in this section guarantee that DML2 remains

asymptotically valid for any K ≤ n.

The asymptotic framework considered in this section for DML is, to the best of my

knowledge, new and approximates finite sample situations often faced by practitioners. For

instance, small-sample situations where the practitioner implementing DML desires to in-

crease K to improve the precision of the nuisance parameter estimators η̂k’s, which use a

fraction (K − 1)/K of the data; see Remark 2.3. This finite sample situation is not well

approximated by the available asymptotic framework in the literature, which considers that

K is fixed as n→ ∞.

The next results present the asymptotic distributions of the estimators based on DML1

and DML2 when the number of folds K → ∞ as n→ ∞.

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold. In addition, assume K is such that

K ≤ n, K → ∞ and K/
√
n → c ∈ [0,∞) as n → ∞. If φ1 ≤ 1/2 and 1/4 < min{φ1, φ2},

then

n1/2
(
θ̂n,1 − θ0

)
d→ N(cΛ, σ2) ,

where θ̂n,1 and σ2 are as in (2.6), (2.11), respectively, and

Λ =
Cov [m(Wi, θ0, ηi), −ψa(Wi, ηi)]

E[ψa(Wi, ηi)]2
. (3.6)

Theorem 3.2. Suppose Assumptions 3.1 and 3.2 hold. In addition, assume K is such that

K ≤ n, K → ∞ as n→ ∞. If φ1 ≤ 1/2 and 1/4 < min{φ1, φ2}, then

n1/2
(
θ̂n,2 − θ0

)
d→ N(0, σ2) ,

where θ̂n,2 and σ2 are as in (2.7) and (2.11), respectively.
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Theorems 3.1 and 3.2 explain why DML1 and DML2 behave similarly in simulations for

many models previously studied in the literature, including the ones presented in Example

2.1 (ATE), Example 2.2 (ATT-DID), and Example A.3 (PLM). All these examples have

Λ = 0, and, therefore, by these theorems, it follows that both estimators have the same

asymptotic distribution whenever K → ∞ slowly as n→ ∞ (i.e., K = O(n1/2)).

Theorem 3.1 shows that (first-order) asymptotic properties of DML1 can be sensitive to

K when Λ ̸= 0. Intuitively, this theorem shows the distribution of n1/2
(
θ̂n,1 − θ0

)
can be

approximated by N(ΛK/
√
n, σ2), which is sensitive to the choice of K when n is small. In

particular, when K ∼
√
n and Λ ̸= 0, the asymptotic distribution of estimators based on

DML1 is not centered at zero, i.e., there is an asymptotic bias proportional to Λ affecting

the reliability of the inference procedure and the accuracy of the estimation. Some examples

where Λ is typically nonzero are Example 2.3 (LATE) and Example A.1 (w-ATE).

The previous implications make clear that Λ is a discrepancy measure between DML1 and

DML2. More concretely, when Λ equals zero, DML1 and DML2 exhibit similar first-order

asymptotic properties, but as Λ deviates from zero, DML1 becomes more sensitive to large

values of K in terms of bias and MSE, while this is not the case of DML2. See Remark 3.6

for additional discussion on why DML1 has asymptotic bias proportional to Λ.

The conditions presented in Theorem 3.2 guarantee that estimators based on DML2 are

asymptotically valid for any K ≤ n. More concretely, under the conditions presented in this

theorem, all the DML2 estimators using different K share the same asymptotic distribution

N(0, σ2). This class of DML2 estimators includes the leave-one-out estimator defined by

setting K = n. These results have practical consequences for the practitioner that desires

to increase K to improve the precision of the nuisance parameter estimators. This theorem

indicates that these DML2 estimators obtained by increasing K are asymptotically valid.

Finally, the proofs of Theorems 3.1 and 3.2 share the same structure and rely on two

intermediate results. The first intermediate result is presented in Theorem C.1 for DML1

and in Theorem C.2 for DML2. These theorems state that a first-order equivalence condition

holds for the estimators based on DML and their oracle versions defined in Remark 2.2 when

K → ∞ as n → ∞. The second intermediate result calculates the asymptotic distribution

of the oracle version of the DML estimators defined in Remark 2.2. This result is presented

in Proposition C.1. It can be shown that Λ appears as an asymptotic bias for DML1 because

the oracle version of the DML1 estimators depends on sample splitting, while this is not the

case for the oracle version of the DML2 estimators.

Remark 3.3. If K/
√
n → ∞ and Λ > 0, then the estimators based on DML1 may have a

degenerate asymptotic distribution. More concretely, when K ∼ n1/2+ϵ for some sufficiently

small ϵ > 0, it is possible to guarantee that (i) n1/2
(
θ̂n,1 − θ̂∗n,1

)
= op(1) by extending
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Theorem C.1 and Lemma C.3, and (ii) n1/2
(
θ̂∗n,1 − θ0

)
converge to ∞ with probability

approaching one, which follows by the proof of Proposition C.1. Therefore, n1/2
(
θ̂n,1 − θ0

)
can converge to ∞, which is a degenerate distribution.

Remark 3.4. The first-order equivalence condition between θ̂n,j and its oracle version θ̂∗n,j

relies on stronger assumptions compared to the existing DML framework to accommodate

that K → ∞ and n → ∞. These assumptions are presented in parts (c) and (d) of As-

sumption 3.2, and they are used to prove two important intermediate results that appear in

Lemma C.2,

n−1/2

n∑
i=1

(η̂i − ηi)
⊤∂ηm(Wi, θ0, ηi) = op(1) , (3.7)

and in Lemma C.3,

max
k=1,...,K

∣∣∣∣∣n−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤∂ηm(Wi, θ0, ηi)

∣∣∣∣∣ = op(1) . (3.8)

When K is fixed as n → ∞, the previous intermediate results, (3.7) and (3.8), follow from

a Bonferroni correction argument and∣∣∣∣∣n−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤∂ηm(Wi, θ0, ηi)

∣∣∣∣∣ = op(1) . (3.9)

The proof of (3.9) when K is fixed follows by (i) a Neyman orthogonality condition and

(ii) a conditional independence property due to the construction of the estimates η̂i using

cross-fitting (e.g., conditional on Xi, the estimation error η̂i − ηi and Wi are independent).

However, this proof cannot be adapted to the case where K → ∞ as n→ ∞.

Remark 3.5. The condition (3.7) is important to obtain asymptotically valid estimators

with the same asymptotic distribution as the oracle estimator in (2.4). Remark 3.4 pointed

out this is the case for DML estimators. Equivalent formulations of (3.7) as a high-level

condition have been used in the literature to establish a first-order equivalence condition

between a plug-in estimator—defined in Section 2.1— and its oracle version (e.g., Andrews

(1994), Farrell (2015)). In general, the verification of (3.7) for plug-in estimators is difficult

since it is unclear whether E[(η̂i − ηi)
⊤∂ηm(Wi, θ0, ηi)] is zero (or asymptotically zero) due

to the correlation between η̂i − ηi and ∂ηm(Wi, θ0, ηi), which is a manifestation of the “own

observation” bias that arise because the same data are used to estimate η0 and θ0.

Remark 3.6. The discrepancy measure Λ is proportional to the first-order asymptotic bias

of the DML1 estimator because its oracle version depends on sample splitting, which is
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not the case for the DML2 estimator. For the sake of explanation, suppose the nuisance

parameter is known. In this case, the oracle estimator θ̂∗n,1 defined in Remark 2.2 is equal to

the average of K preliminary estimators θ̃∗k, that is

θ̂∗n,1 = K−1

K∑
k=1

θ̃∗k ,

where each θ̃∗k is as in (2.4) but using only observations in the fold Ik, which has n/K

observations. Therefore, each of these preliminary estimators has a (higher-order) asymptotic

bias equal to Λ(n/K)−1 since it uses n/K observations. An explicit expression for Λ can be

obtained based on standard arguments (e.g., Newey and Smith (2004)). Since the bias of the

average of the estimators is the same as the average of the bias of the estimators, it follows

that the (higher-order) asymptotic bias of θ̂∗n,1 is ΛK/n. Intuitively, when K ∼
√
n, this

asymptotic bias become proportional to Λ/
√
n and shows up in the first-order asymptotic

distribution of the oracle estimator θ̂∗n,1. Finally, since the feasible DML1 estimator θ̂n,1 and

θ̂∗n,1 are first-order equivalent, their asymptotic distributions are the same.

3.3 High-Order Asymptotic Theory for DML2 estimators

This section presents higher-order asymptotic properties (e.g., bias, variance, and MSE) of

the estimators based on DML2 in an asymptotic framework where the number of folds K

increases with the sample size n. Specifically, it shows that the leading term of the higher-

order bias is a decreasing function ofK. Moreover, it presents conditions under which setting

K equals n minimizes the second-order MSE of DML2 estimators.

The goal of this section is to propose asymptotic approximations that offer a better

description of the finite sample behavior of the DML2 estimators. The approximations

based on the first-order asymptotic distribution are insufficient for this goal since all the

DML2 estimators share the same asymptotic distribution for any K ≤ n (Theorem 3.2).

In this section, I obtain better approximations by considering stochastic expansions up to a

smaller remainder error term than in the existing first-order asymptotic theory.

The main idea is to use these better approximations to study the higher-order asymptotic

properties of the estimators based on DML2, with the hope that they are reliable enough

to explain the finite sample behavior of the estimators. This approach has a long history in

econometrics to compare estimators that are first-order equivalent (e.g., Rothenberg (1984),

Linton (1995), Newey and Smith (2004), Graham et al. (2012)).
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Stochastic Expansions for DML2 estimators

The next result presents a stochastic expansion for the estimators based on DML2 that is

asymptotically valid when K increases with the sample size n. This stochastic expansion

focuses on the nuisance parameter estimators satisfying Assumption 3.2 with φ1 = φ2; see

Remark 3.8 for additional discussion of other cases. For the remainder of this section, I set

φ = φ1 = φ2.

Theorem 3.3. Suppose Assumptions 3.1, 3.2, and 3.3 hold. In addition, assume K is such

that K ≤ n and K → ∞ as n→ ∞. If φ ∈ (1/4, 1/2), then

n1/2(θ̂n,2 − θ0) = T ∗
n + T nl

n,K +Rn,K , (3.10)

where θ̂n,2 is as (2.7), T ∗
n is defined in (3.11) and T ∗

n
d→ N(0, σ2) as n→ ∞ with σ2 defined

as in (2.11), T nl
n,K is defined in (3.12) and satisfies (i) limn→∞ infK≤n V ar[n

2φ−1/2T nl
n,K ] > 0

and (ii) limn→∞ supK≤nE
[(
n2φ−1/2T nl

n,K

)2]
<∞, and

lim
n→∞

sup
K≤n

P (n2φ−1/2|Rn,K | > ϵ) = 0 ,

for any given ϵ > 0.

Theorem 3.3 presents a stochastic expansion more accurate than the available first-order

asymptotic theory for any given sequence K → ∞ as n → ∞. More concretely, equation

(3.10) presents a remainder error term Rn,k that is stochastically smaller than T nl
n,K , i.e.,

n2φ−1/2Rn,k converges to zero in probability for any sequence K → ∞, while this is not

the case for n2φ−1/2T nl
n,k since its variance is positive for any n sufficiently large. Therefore,

under the conditions of this theorem, Rn,K in (3.10) is smaller than the remainder error term

R∗
n,K = T nl

n,K +Rn,K obtained by the first-order approximation, denoted by T ∗
n ,

n1/2(θ̂n,2 − θ0) = T ∗
n +R∗

n,K ,

where

T ∗
n = n−1/2

n∑
n=1

m(Wi, θ0, ηi)/E[ψ
a(Wi, ηi)] . (3.11)

The approximation in Theorem 3.3 includes the additional term T nl
n,K to accommodate

for the errors of the nuisance parameter estimators. More concretely, under the conditions of

Theorem 3.3, T nl
n,K is defined as the leading term in the scaled difference between the feasible
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estimator θ̂n,2 and oracle estimators θ̂∗n,2 defined in Remark 2.2,

n1/2
(
θ̂n,2 − θ̂∗n,2

)
= T nl

n,K +Rnl
n,K ,

where

lim
n→∞

sup
K≤n

P (n2φ−1/2|Rnl
n,K | > ϵ) = 0

and

T nl
n,K =

1

2
n−1/2

K∑
k=1

∑
i∈Ik

∆⊤
i

(
∂2ηm(Wi, θ0, ηi)/E[ψ

a(Wi, ηi)]
)
∆i , (3.12)

with ∆i defined below for i ∈ Ik,

∆i = n
−1/2
0

∑
ℓ/∈Ik

n−φ
0 δn0(Wℓ, Xi) + n−1

0

∑
ℓ/∈Ik

n−φ
0 bn0(Xℓ, Xi) , (3.13)

where δn0 and bn0 are the functions in Assumption 3.2. The approximation of the scaled differ-

ence between θ̂n,2 and θ̂
∗
n,2 is obtained by using Taylor expansions to approximate ψz(Wi, η̂i)

by ψz(Wi, ηi) for z = a, b.

Remark 3.7. When K is fixed as n→ ∞, a similar stochastic expansion can be derived for

DML1,

n1/2(θ̂n,1 − θ0) = T ∗
n + T nl

n,K + op(n
1/2−2φ) .

Furthermore, the stochastic expansion in (3.10) for DML2 remains valid when K is fixed as

n → ∞. These expressions show that when K is fixed and φ = φ1 = φ2, the two leading

terms in the stochastic approximation are the same.

Remark 3.8. Theorem 3.3 presents a stochastic expansion for the case φ = φ1 = φ2,

representing situations where the nuisance function estimator balances bias and variance.

For example, this occurs when a bandwidth with an optimal convergence rate is used in

Nadaraya-Watson estimators to estimate the nuisance function. Appendix A.2 discusses the

case where φ1 < φ2, which represents situations where the bias of the nuisance function

estimator converges faster than the variance components (e.g., undersmoothing). Theorem

A.1 extends Theorem 3.3 by providing the stochastic expansion for the alternative cases of

(φ1, φ2).
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High-Order Asymptotic Properties

I calculate the higher-order asymptotic bias, variance, and mean squared error (MSE) of the

estimator θ̂n,2 by using the asymptotic approximation Tn,K defined next,

Tn,K = T ∗
n + T nl

n,K . (3.14)

More concretely, the higher-order bias, variance, and MSE of θ̂n,2 are respectively defined as

HO-Bias[θ̂n,2] = n−1/2E[Tn,K ] ,

HO-Var[θ̂n,2] = n−1Var[Tn,K ] ,

HO-MSE[θ̂n,2] = n−1E[T 2
n,K ] .

Theorems 3.4 and 3.5, and Corollary 3.1 present explicit expressions for the leading terms

of E[Tn,K ], Var[Tn,K ], and E[T 2
n,K ].

Similar definitions of higher-order asymptotic bias and variance have been used to com-

pare alternative estimators with the same asymptotic distribution, including Rothenberg

(1984), Linton (1995), and Newey and Smith (2004). As discussed in Rothenberg (1984),

these definitions are valid asymptotic approximations of the bias and variance of the estima-

tors whenever additional regularity conditions hold. An alternative interpretation discussed

in Linton (1995) suggests that these definitions could be interpreted as a form of approxi-

mations of the bias and variance of θ̂n,2 since they are based on the moments of the approx-

imation Tn,K , which has a distribution that asymptotically approximates the distribution of

n1/2(θ̂n,2 − θ0) up to an error o(n1/2−2φ) under certain regularity conditions.

The next theorem presents the expected value and variance of Tn,K , which can be used

to calculate the higher-order bias and variance of the DML2 estimator.

Theorem 3.4 (Higher-Order Bias). Suppose Assumptions 3.1, 3.2, and 3.3 hold. In addi-

tion, assume K is such that K ≤ n and K → ∞ as n→ ∞. If φ ∈ (1/4, 1/2), then

E[Tn,K ] = (Fδ + Fb)

(
1 +

1

K − 1

)2φ

n1/2−2φ + νn,K ,

where

sup
K≤n

|νn,K | = o(n1/2−2φ) ,

with Tn,K, Fδ and Fb defined as in (3.14), (3.3) and (3.4), respectively.
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Theorem 3.5 (Higher-Order Variance). Suppose Assumptions 3.1, 3.2, and 3.3 hold. In

addition, assume K is such that K ≤ n and K → ∞ as n→ ∞. If φ ∈ (1/4, 1/2), then

Var[Tn,K ] = σ2 +Gb

(
1 +

1

K − 1

)2φ−1/2

n1/2−2φ + rn,K ,

where

sup
K≤n

|rn,K | = o(n1/2−2φ) ,

with Tn,K, σ
2, and Gb defined as in (3.14), (2.11), and (3.5), respectively.

Theorems 3.4 and 3.5 can be used to find the higher-order bias and variance of θ̂n,2,

HO-Bias[θ̂n,2] = (Fδ + Fb)

(
1 +

1

K − 1

)2φ

n−2φ + νn,Kn
−1/2 ,

and

HO-Var[θ̂n,2] = σ2n−1 +Gb

(
1 +

1

K − 1

)2φ−1/2

n−1/2−2φ + rn,Kn
−1 .

The leading term of the higher-order bias depends on Fδ and Fb defined in (3.3) and (3.4),

respectively. While the second leading term of the higher-order variance depends on Gb

defined in (3.5). These are quantities that depend on three elements: (i) the functions

δn0 and bn0 that appear in the stochastic expansion for the nuisance parameter estimator

presented in Assumption 3.2, (ii) the second-order derivatives of the moment function m

with respect to η, and (iii) the data distribution.

The previous calculation reveals that the absolute value of the leading term in the higher-

order bias, |Fδ + Fb|(1 + 1/(K − 1))2φn−2φ, decreases as K increases. Therefore, the leave-

one-out estimator, defined as the DML2 estimator with K = n, minimizes the absolute

value of the leading term in the higher-order asymptotic bias. The two leading terms of the

higher-order variance, σ2n−1 and Gb(K/(K− 1))2φ−1/2n−1/2−2φ, define a decreasing function

of K when Gb > 0. Similarly, when Gb > 0, the leave-one-out minimize the two leading

terms of the higher-order variance.

The next result is a corollary derived from Theorems 3.4 and 3.5. It presents the second

moment of Tn,K , which can be used to calculate the higher-order MSE of the DML2 estimator.

Corollary 3.1. Suppose the conditions of Theorems 3.4 and 3.5 holds. Then,

E[T 2
n,K ] = σ2 +Gb

(
1 +

1

K − 1

)2φ−1/2

n1/2−2φ + r̃n,K ,
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where

sup
K≤n

|r̃n,K | = o(n1/2−2φ) ,

with Tn,K, σ
2 and Gb defined as in (3.14), (2.11) and (3.5), respectively.

Corollary 3.1 can be used to find the higher-order MSE,

HO-MSE[θ̂n,2] = σ2n−1 +Gb

(
1 +

1

K − 1

)2φ−1/2

n−1/2−2φ + r̃n,Kn
−1 .

The two leading terms of HO-MSE[θ̂n,2] define the second-order asymptotic MSE,

SO-MSE[θ̂n,2] = σ2n−1 +Gb

(
1 +

1

K − 1

)2φ−1/2

n−1/2−2φ ,

which is a decreasing function on K when Gb is positive. Therefore, the leave-one-out

estimator can minimize the second-order asymptotic MSE by setting K = n when Gb > 0.

Remark 3.9. When K is fixed as n→ ∞, it can be shown that the two leading terms of the

higher-order MSE, σ2/n and Gb (1 + 1/(K − 1))2φ−1/2 n−1/2−2φ, are the same for DML1 and

DML2 up to an error of size o(n−1/2−2φ). For this conclusion is important that K is fixed

as n → ∞, since some higher-order terms in the asymptotic approximation for DML1 may

become large terms for larger values of K. Remark 3.10 illustrate this point by considering

the higher-order MSE of the oracle version of the DML1 and DML2 estimators defined in

Remark 2.2.

Remark 3.10. When K is fixed as n→ ∞, an explicit expression for the higher-order MSE

of the oracle estimators θ̂∗n,1 and θ̂
∗
n,2 defined in Remark 2.2 can be derived based on standard

arguments (e.g., Newey and Smith (2004)):

HO-MSE[θ̂∗n,1] = σ2/n+
(
K2Λ2 +KΛ1

)
/n2 + o(n−2)

HO-MSE[θ̂∗n,2] = σ2/n+
(
Λ2 + Λ1

)
/n2 + o(n−2)

where

Λ1 = 5Λ2 + σ2

{
3
E [ψa(W, η0(X))2]

E [ψa(W, η0(X))]2
− 1

}
− 2

E [m(W, θ0, η0(X))2ψa(W, η0(X))]

E [ψa(W, η0(X))]3
,

with σ2 and Λ defined as in (2.11) and (3.6), respectively. Two main differences with respect

to the results in Corollary 3.1 deserve further discussion. First, the remainder errors for the

oracle versions are o(n−2) and the second leading terms have a convergence rate of order n−2,
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implying these terms are smaller than the second leading term of the higher-order MSE of

θ̂n,2 that is of order n
−1/2−2φ. Therefore, the second leading term that appears for the oracle

estimators is a higher-order term included in o(n−1/2−2φ). Second, the second leading term,

(K2Λ +KΛ1) /n
2, in the higher-order MSE of θ̂∗n,1 depends on K; therefore, for large values

of K the accuracy of θ̂∗n,1 is worse than the accuracy of θ̂∗n,2.

4 Lessons for Practitioners

This section presents some lessons for practitioners when implementing DML based on the

formal results of Section 3. These lessons have theoretical support and, to the best of my

knowledge, are new in the DML literature. Furthermore, these lessons are possible because

of the asymptotic framework considered in this paper, which provides insights not captured

by the existing first-order asymptotic theory or simulation-based evidence.

Before presenting them, it is important to remember that DML provides estimators as

good as if the true nuisance function η0(·) has been used. However, it gives a wide array of

alternatives to practitioners that may seem roughly equivalent. Among these alternatives,

two available estimators, namely, DML1 and DML2, are presented in Section 2.1. Each

estimator depends on the number of equal-sized folds K in which the data are randomly

split. In what follows, I present and discuss the recommendations for DML implementation,

including how to select K.

First lesson: DML2 is the recommended option for DML implementation, especially

in small-sample situations when increasing the number of folds is desired to improve the

precision of the estimators η̂k(·), which use a fraction (K − 1)/K of the sample size n. This

recommendation is not new. It was presented in Chernozhukov et al. (2018), but it now

has a theoretical justification in terms of bias and MSE. The results in Section 3.2 show

that the asymptotic distribution of DML2 is insensitive in terms of bias and MSE to the

K values, which is not the case of DML1, which becomes increasingly sensitive in terms

of bias and MSE to large values of K whenever the discrepancy measure Λ —defined in

(3.6)— deviates from zero. Moreover, the conditions presented in Section 3.1 guarantee

that the estimators based on DML2 are asymptotically valid for any K ≤ n, including the

leave-one-out estimator defined as DML2 with K = n.

Number of Folds for Cross-Fitting

The previous lesson recommends the use of DML2 estimators, but how to choose the number

of folds is unclear because the results of Section 3.2 show that all DML2 estimators share the

same asymptotic distribution. This question is addressed in what follows by considering two
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Figure 1: Higher-order bias for DML2, where n = 1, 000, F = 1, and φ = 2/5.

different criterion based on the (higher-order) asymptotic bias and the second-order MSE.

I used the explicit formulas presented in Section 3.3, where the higher-order properties of

DML2 estimators were studied when K increases with the sample size n.

Second lesson: Choosing the number of folds equal to the sample size to implement

DML2 is asymptotically optimal to reduce the (higher-order) asymptotic bias. The explicit

formulas presented in Section 3.3 show that the absolute value of the leading term of the

higher-order asymptotic bias for DML2 estimators is decreasing on K. For convenience, this

explicit formula is presented next,

F

(
1 +

1

K − 1

)2φ

n−2φ (4.1)

where φ ∈ (1/4, 1/2) and F = |Fδ + Fb|. Figure 1 presents this explicit formula scaled by
√
n as a function of the number of folds K that appears as a blue line with circular markers

and the optimal level (minimal) obtained when K = n that appears as a constant red line

with square markers. Figure 1 uses n = 1, 000, F = 1 and φ = 2/5 for illustrative purposes.

Therefore, choosing K = n for DML2 implementation is optimal for reducing the asymp-

totic bias, while the common recommendations of choosing K = 5, 10 or 20 are suboptimal.

Figure 1 reveals that the discrepancy between the asymptotic bias with the common rec-

ommendations for K and the optimal choice can be small. However, this conclusion may

depend on the values of n, F , and φ used in Figure 1. In the fourth lesson, I discuss the

relative loss of the asymptotic bias with respect to the optimal choice for the common choice

of K for the arbitrary values of F and φ.

Third lesson: Choosing the number of folds equal to the sample size to implement DML2

can be asymptotically optimal for reducing the second-order asymptotic MSE. In other

words, the leave-one-estimator defined as the DML2 estimator using K = n can be the
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Figure 2: Second-order MSE for DML2, where n = 1, 000, σ = 1, Gb = 1, and φ = 2/5.

most asymptotically accurate estimator among the class of DML2 estimators when a certain

data-dependent condition holds.

To illustrate this lesson, I present next the second-order asymptotic MSE when the

variance and the bias of the nuisance parameter estimator have the same convergence rate

(i.e., φ = φ1 = φ2), that is,

SO-MSE of θ̂n,2 = σ2/n+Gb

(
1 +

1

K − 1

)2φ−1/2

/n1/2+2φ , (4.2)

where φ ∈ (0, 1/2) and Gb is a complex object that depends on the data. Note that

SO-MSE of θ̂n,2 in (4.2) is a decreasing function of K whenever Gb is positive, which is

the data-dependent condition mentioned above. Figure 2 presents the second-order MSE

scaled by n as a function of the number of folds K that appears as a blue line with circular

markers and the optimal second-order MSE obtained by K = n (under the assumption that

Gb > 0) that appears as a constant red line with square markers. Figure 2 uses n = 1, 000,

σ = 1, Gb = 1, and φ = 2/5 for illustrative purposes.

Therefore, choosing K = n for DML2 implementation is optimal for reducing the second-

order MSE, while the common recommendations of K = 5, 10, or 20 are suboptimal under

this criterion. Finally, the relative loss of the second-order MSE with respect to the optimal

choice looks small for K ≥ 10. However, the general conclusion may depend on the values of

parameters (n, σ, Gb, φ). In the fourth lesson, I discuss the relative loss of the second-order

asymptotic MSE with respect to the optimal choice for the common choice of K for arbitrary

values of the parameters used in Figure 2.

Remark 4.1. Figure 2, and more concretely, the explicit expression for the second-order

MSE presented in (4.2), explains several of the findings obtained through simulations, such
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as the relatively large accuracy gains by increasing K from 2 to 5 folds compared to increases

K from 5 to 10 or 10 to 20.

The previous two lessons revealed that the common recommendation of choosing 5, 10,

or 20 folds for the cross-fitting procedure in DML (e.g., Ahrens et al. (2024a,b), Bach et al.

(2022), and Bach et al. (2024)) is suboptimal in terms of (higher-order) bias and second-

order MSE. The next lesson discusses the relative loss a practitioner can face by choosing

K = 5, 10, 20 instead of the optimal choice K = n.

Fourth lesson: If the optimal choice in terms of bias and accuracy is K = n, then

choosing K = 10 for implementing DML2 guarantees that the maximum relative loss with

respect to the optimal choice in terms of bias and second-order MSE is approximately 10%

and 5%, respectively. In other words, the practitioner implementing DML2 with K = 10

has an estimator with a (higher-order) bias that is at most 10% larger than that obtained

by implementing DML2 with the optimal K = n. Similarly, the second-order MSE of the

DML2 estimator with K = 10 is at most 5% larger than that obtained by implementing

DML2 with the optimal K = n. In what follows, I explain in more detail these results and

present simple expressions for calculating these maximum relative losses as a function of K,

n, and φ.

The relative loss of the (higher-order) bias with respect to the optimal choice is presented

next as a function of K, (
1 + 1

K−1

1 + 1
n−1

)2φ

− 1 , (4.3)

which represents the percentage change of (4.1) with respect to the optimal value of (4.1)

(K = n). In Figure 3, panel (a) presents the previous expression in percentages as a function

of K. The blue line with circular markers represents the case of nuisance function estimators

with slower convergence rates (φ = 1/4). The red line with square markers corresponds to

nuisance function estimators with faster convergence rates (φ = 1/2). It follows from (4.3)

and the figure that when K = 10, the relative loss of the (higher-order) bias is between

5% and 10% for different values of φ ∈ (1/4, 1/2); therefore, it is at most 10%. Figure 3

consideres n = 1, 000; nevertheless, the results do not change whenever n ≥ 1, 000.

The relative loss of the second-order MSE with respect to the optimal choice is presented

next as a function of K,

1 + υ
(
1 + 1

K−1

)2φ−1/2
/n2φ−1/2

1 + υ
(
1 + 1

n−1

)2φ−1/2
/n2φ−1/2

− 1 , (4.4)

which represents the percentage change of (4.2) with respect to the optimal value of (4.2)
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(a) RL of Bias as in (4.3) (b) RL of second-order MSE as in (4.5)

Figure 3: The relative loss (RL) of bias and second-order MSE with respect to the optimal
choice for nuisance parameter estimators with slower (φ = 1/4) and faster (φ = 1/2) con-
vergence rates, where n = 1, 000.

when Gb is positive (K = n), and where υ = Gb/σ
2. This previous expression depends on υ,

which may be difficult to know in empirical applications. When υ is positive, the expression

in (4.4) is an increasing function of υ for any K ≤ n. In particular, (4.4) can be bounded by

the following expression, (
1 + 1

K−1

)2φ−1/2(
1 + 1

n−1

)2φ−1/2
− 1 , (4.5)

which only depends on K, n, and ζ = 2φ− 1/2. In Figure 3, panel (b) presents the previous

expression in percentages as a function of K. It follows from (4.5) and the figure that when

K = 10, the relative loss of the second-order asymptotic MSE is between 0.2% and 5%;

therefore, it is at most 5%. Figure 3 consideres n = 1, 000; nevertheless, the results do not

change whenever n ≥ 1, 000.

Remark 4.2. The third lesson uses the second-order asymptotic MSE as an optimality

criterion for evaluating the DML2 implementation. Specifically, it was used to guide how

to select the number of folds K by minimizing the second-order MSE of θ̂n,2. This criterion

can be interpreted as an accuracy criterion because SO-MSE[θ̂n,2] can be interpreted as an

approximation to the MSE of θ̂n,2 based on the following informal derivations:

E

[(
θ̂n,2 − θ0

)2] (1)
≈ n−1E

[
T 2
n,K

] (2)
≈ SO-MSE[θ̂n,2] ,

where (1) is motivated by the stochastic expansion in Theorem 3.3 and (2) by the calculations

based on Corollary 3.1. A similar criterion was used by Linton (1995) to select an optimal

bandwidth and by Donald and Newey (2001) to select the optimal number of instruments,
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while Newey and Smith (2004) used a similar idea to compare estimators sharing the same

asymptotic distribution.

Remark 4.3. The simulation results presented in Section 5 are consistent with Gb > 0 in

(4.2). However, testing whether or not Gb is positive is left for future research.

Remark 4.4. The second-order MSE described in Remark 4.2 defines an optimality criterion

that can be used to compare different decisions regarding the DML implementation. In this

paper, I used this criterion to select K. However, it can also be applied to select bandwidths

or estimators for the nuisance function in applications. These alternative uses are beyond

the scope of this paper and are left for future research.

5 Monte-Carlo Simulations

This section examines the asymptotic results presented in Section 3 in finite samples. Specif-

ically, I present the bias and mean squared error (MSE) of estimators based on DML1 and

DML2 building on the Monte Carlo simulation designs for ATT-DID from Sant’Anna and

Zhao (2020) and for LATE from Hong and Nekipelov (2010). Additionally, I present the

coverage probability of confidence intervals constructed as in Chernozhukov et al. (2018).

For the sake of readability, these confidence intervals are defined next

CIj(1− α) =

[
θ̂n,j − z1−α/2

σ̂n,j√
n
, θ̂n,j + z1−α/2

σ̂n,j√
n

]
, (5.1)

where z1−α is the 1− α quantile of the standard normal distribution,

σ̂2
n,j =

n−1
∑n

i=1m(Wi, θ̂n,j, η̂i)
2

(n−1
∑n

i=1 ψ
a(Wi, η̂i))

2 ,

θ̂n,j is as in (2.6) and (2.7) for DML1 and DML2, respectively, and η̂i is as in (2.5).

5.1 Difference-in-Difference

This section is based on Example 2.2. I built on the simulation design presented in Sant’Anna

and Zhao (2020). The observed outcome in the pre-treatment period and the potential

outcomes in the post-period treatment are defined by

Y0,i = freg(Xi) + v(Xi, Ai) + ε0,i

Y1,i(a) = 2freg(Xi) + v(Xi, Ai) + ε1,i(a) , a = 0, 1
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(a) Bias (b) MSE (c) Coverage probability (%)

Figure 4: Bias and MSE of estimators for the ATT-DID based on DML1 and DML2 as in
(2.6) and (2.7), respectively. Coverage probability of confidence intervals as in (5.1) for the
ATT-DID with a nominal level of 95%. Discrepancy measure Λ = 0, sample size n = 3, 000
and 5,000 simulations.

where freg(X) = 210 + 6.85X1 + 3.425(X2 + X3 + X4) and v(Xi, Ai) = Aifreg(X) + εv,i,

and (ε0,i, ε1,i(0), ε1,i(1), εv,i) is distributed as N(0, I4), I4 is the 4 × 4 identity matrix. The

treatment assignment is defined by Ai ∼ Bernoulli(p(Xi)), where

p(Xi) =
exp(fps(Xi))

1 + exp(fps(Xi))

fps(X) = 0.25(−X1 + 0.5X2 − 0.25X3 − 0.1X4) .

Finally, the vector of covariates is Xi = (X1,i, X2,i, X3,i, X4,i) ∈ [0, 1]4 and all its coordinates

are independent uniform random variables (e.g., X1,i ∼ Uniform[0, 1]).

The estimators for the ATT-DID are defined as in (2.6) and (2.7) using ψa and ψb

presented in Example 2.2. To estimate the jth component of the vector of nuisance functions

η0, I use the Nadaraya-Watson estimator with a 6th-order Gaussian kernel and common

bandwidth hj = cn
−1/16
0 for all coordinates, where n0 = (K − 1)/Kn.4

I consider a sample size n = 3, 000, different values for the choice of the number of

folds K ∈ {2, 5, 10, . . . , 30}, and perform 5, 000 simulations. I additionally consider different

values for the constant c ∈ {0.37, 0.62, 0.86, 1.11} in the bandwidth.

Figures 4 and 5 report the results of the simulations in terms of bias, MSE, and coverage

4I also considered a 2nd order Gaussian Kernel in the simulations. The results are presented in Figures
D.8 and D.9 in Appendix D, and they are similar to the ones presented using a 6th order Gaussian kernel.
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(a) Bias (b) MSE (c) Coverage probability (%)

Figure 5: Bias and MSE of estimators for the ATT-DID based on DML2 as in (2.7) for

different values of c in h = cn
−1/16
0 . All the values of n×MSE for c = 0.37 are larger than

24. Coverage probability of confidence intervals as in (5.1) for the ATT-DID with a nominal
level of 95%. Sample size n = 3, 000 and 5,000 simulations.

probability. Figure 4 compares the performance between the DML1 and DML2 estimators

across different values of K, with c = 0.62. Panel (a) presents the absolute value of the scaled

bias. It shows that the biases of DML1 and DML2 are similar. This result is consistent with

the findings of Section 3.2 since the discrepancy measure Λ = 0 for Example 2.2 (ATT-

DID). Furthermore, the bias of DML2 decreases as K increases, consistent with Theorem

3.4. Panel (b) presents the scaled MSE. It shows that DML1 and DML2 exhibit similar

values. Moreover, the scaled MSE of DML2 decreases as K increases, which aligns with

Corollary 3.1. Finally, Panel (c) highlights the similarities between DML1 and DML2 in

terms of the coverage probability of their confidence intervals. Overall, Figure 4 aligns with

the findings in Section 3, suggesting that DML1 and DML2 behave similarly when Λ = 0.

Figure 5 compares the results of DML2 estimators for different values of c. It presents

results qualitatively similar to the ones in Figure 4, with some exceptions for c = 0.37 that

present a non-monotonic scaled bias and large values for the scaled MSE. It also reveals that

the scaled bias and MSE are sensitive to the values of c. For instance, the scaled MSE for

c = 1.11 is larger than twice the scaled MSE for c = 0.62 due to a larger bias.
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5.2 Local Average Treatment Effects

This section is based on Example 2.3. I built on the simulation design presented in Hong

and Nekipelov (2010). The potential treatment decisions are defined as

Di(1) = I{Xi + 0.5 ≥ Vi} ,

Di(0) = I{Xi − 0.5 ≥ Vi} ,

where Xi ∼ Uniform[0, 1] and Vi ∼ N(0, 1) are independent random variables. The potential

outcomes are defined by

Yi(1) = ξ1,i + ξ3,iI{Di(1) = 1, Di(0) = 1}+ ξ4,iI{Di(1) = 0, Di(0) = 0} ,

Yi(0) = ξ2,i + ξ3,iI{Di(1) = 1, Di(0) = 1}+ ξ4,iI{Di(1) = 0, Di(0) = 0} ,

where ξ1,i ∼ Poisson(exp(Xi/2)), ξ2,i ∼ Poisson(exp(Xi/2)), ξ3,i ∼ Poisson(2), and ξ4,i ∼
Poisson(1), and all these random variables are independent conditional onXi. The treatment

assignment is defined by Zi ∼ Bernoulli(Φ(Xi − 0.5)). As in Example 2.3, the observed

treatment decision and the observed outcome are defined by Di = ZiDi(1) + (1 − Zi)Di(0)

and by Yi = DiYi(1) + (1−Di)Yi(0), respectively.

The estimators for the LATE are defined as in (2.6) and (2.7) using ψa and ψb presented

in Example 2.3. To estimate the jth component of the vector of nuisance functions η0, I use

the Nadaraya-Watson estimator with a 2th-order Gaussian kernel and common bandwidth

hj = cn
−1/5
0 , where n0 = (K − 1)/Kn.

I consider a sample size n = 3, 000, different values for the choice of the number of

folds K ∈ {2, 5, 10, . . . , 30}, and perform 5, 000 simulations. I additionally consider different

values for the constant c ∈ {0.32, 0.53, 0.74, 0.95} in the bandwidth.

Figures 6 and 7 present the results of the simulations in terms of bias, MSE, and coverage

probability. Figure 6 compares the performance between the DML1 and DML2 estimators

across different values of K, with c = 0.53. Panel (a) presents the absolute value of the

scaled bias. It shows that the bias of DML1 is approximately an increasing linear function

of K, which is consistent with the intuition presented in Remark 3.6 since the discrepancy

measure Λ for the LATE in Example 2.3 is different than zero. In contrast, the bias of DML2

decreases as K increases, consistent with Theorem 3.4. Panel (b) presents the scaled MSE.

It reveals that the scaled MSE for DML1 is increasing and approximately quadratic on K.

This finding aligns with the expressions presented in Remark 3.10 for the oracle version of

DML1. Additional simulation results presented in Figure D.10 in Appendix D show that the

DML1 estimator and its oracle version exhibit similar values. In contrast, the scaled MSE
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(a) Bias (b) MSE (c) Coverage Prob.(%)

Figure 6: Bias and MSE of estimators for the LATE based on DML1 and DML2 as in (2.6)
and (2.7), respectively. Coverage probability of confidence intervals as in (5.1) for the LATE
with a nominal level of 95%. Discrepancy measure Λ ̸= 0, sample size n = 3, 000 and 5, 000
simulations.

(a) Bias (b) MSE (c) Coverage probability (%)

Figure 7: Bias and MSE of estimators for the LATE based on DML2 as in (2.7) for different

values of c in h = cn
−1/5
0 . Coverage probability of confidence intervals as in (5.1) for the

LATE with a nominal level of 95%. Sample size n = 3, 000 and 5,000 simulations.

of DML2 is a decreasing function of K. Finally, Panel (c) shows dramatic discrepancies

between DML1 and DML2 in terms of the coverage probability of the confidence intervals

associated with them. In particular, it evidences that inference based on DML1 deteriorates

as K increases. In contrast, DML2 does not have this problem, and inference is reliable for
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all the values of K. Overall, Figure 6 is consistent with the findings in Section 3, suggesting

that DML1 and DML2 behave differently when Λ ̸= 0.

Figure 7 compares the results of DML2 estimators for different values of c. It presents

results qualitatively similar to the ones in Figure 6, with some exceptions for c = 0.32 that

present a non-monotonic scaled bias. It also reveals that the scaled bias and MSE are less

sensitive to the values of c. For instance, the scaled MSE exhibits values between 123 and

124.5 for all the values of c and K between 5 and 30.

6 Concluding Remarks

This paper studies the properties of debiased machine learning (DML) estimators under a

novel asymptotic framework. DML is an estimation method suited to economic models in

which the parameter of interest depends on unknown nuisance functions that must be esti-

mated. In practice, two versions of DML —introduced by Chernozhukov et al. (2018)—can

be used, that is, DML1 and DML2. Both versions randomly divide data into K equal-sized

folds for estimating the nuisance function, but they differ in how these estimates are used

to estimate the parameters of interest. In this paper, I consider an asymptotic framework

in which K diverges to infinity as n diverges to infinity, accommodating small-sample situ-

ations where the practitioner may wish to increase K, situations not well approximated by

the existing framework in which K is fixed as n diverges.

This paper makes several contributions within this new framework. First, it shows that

DML2 asymptotically outperforms DML1 in terms of bias and mean squared error. Ad-

ditionally, it characterizes the first-order asymptotic difference between DML1 and DML2

using a discrepancy measure, Λ, which can be calculated for various treatment effect param-

eters. Second, it provides conditions under which all DML2 estimators, regardless of K, are

asymptotically valid and share the same limiting distribution. To differentiate among them,

the paper employs higher-order asymptotic approximations that lead to the following final

contribution: setting K = n for DML2 implementation can be asymptotically optimal in

terms of higher-order asymptotic bias and second-order asymptotic MSE within the class of

DML2 estimators.
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A Additional Examples and Results

A.1 More Examples

Example A.1 (Weighted Average Treatment Effect). This example is built on the setup of

Example 2.1 (ATE) and the parameter considered in Equation (2) of Hirano et al. (2003).

The parameter of interest is defined by

θ0 = E [E[(Y (1)− Y (0)) | X]g(X)] /E[g(X)] ,

where g(·) is a known function of covariatesX, such that |g(X)| is bounded and E[g(X)] > 0.

When g(X) equals the propensity score E[A | X], the parameter θ0 equals the average

treatment effect on the treated, which implicitly assumes perfect knowledge of the propensity

score. Under the selection-on-observables assumptions, the parameter θ0 can be identified

by a moment condition, such as (2.1), using a moment function like (2.2), where

ψb(W, η) = g(X) (η1 − η2 + A(Y − η1)η3 − (1− A)(Y − η2)η4) ,

ψa(W, η) = g(X) ,

for η ∈ R4, and where the nuisance parameter η0(X) is exactly the same as in Example 2.1.

This moment function appears as the efficient influence function in Hirano et al. (2003) for

the weighted average treatment effect. In this example,

Λ = E[g(X)2 {η0,1(X)− η0,2(X)− θ0}]/E[g(X)]2 ,

which is typically different than zero.

Example A.2 (Average Treatment Effect on the Treated). This example is built on the

setup of Example 2.1 (ATE). It is assumed that there is no knowledge of the propensity

score E[A | X], and it has to be estimated. The parameter of interest is

θ0 = E[Y (1)− Y (0) | A = 1] ,

which is the treatment effect for the treated group, also known as ATT. Under selection-on-

observable assumptions, the parameter θ0 can be identified by a moment condition, such as

(2.1), using a moment function like (2.2), where

ψb(W, η) = A(Y − η1) + (1− A)(1− η2)(Y − η1) ,

ψa(W, η) = A ,
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for η ∈ R2, and where the nuisance parameter η0(X) has two components:

η0,1(X) = E[Y | X,A = 0] ,

η0,2(X) = (E[1− A | X])−1 .

When there is no knowledge of the propensity score, this moment function appears as the

efficient influence function for the ATT in Hahn (1998) and Hirano et al. (2003). In this

example, Λ = 0.

Example A.3 (Partial Linear Model). This example presents the model studied in Robinson

(1988) and Linton (1995). Consider the following model:

Y = Dθ0 + g(X) + U ,

where E[U | D,X] = 0. Here W = (Y,D,X). The parameter of interest is θ0. In this

example, θ0 can be identified by (2.1) and (2.2), where

ψa(W, η) = (D − η2)
2 ,

ψb(W, η) = (Y − η1)(D − η2) ,

for η ∈ R2, and where the nuisance parameter η0(X) has two components:

η0,1(X) = E[Y | X] ,

η0,2(X) = E[D | X] .

In this example, Λ = 0.

Example A.4 (Partial Linear IV Model). This example presents the extended PLM. Con-

sider the following model:

Y = Dθ0 + g(X) + U ,

Z = m(X) + V ,

where E[U | D,Z] = 0 and E[V | X] = 0. Here W = (Y,D,X,Z). The parameter of

interest is θ0. In this example, θ0 can be identified by (2.1) and (2.2), where

ψa(W, η) = (D − η2)(Z − η3) ,

ψb(W, η) = (Y − η1)(Z − η3) ,
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for η ∈ R3, and where the nuisance parameter η0(X) has three components:

η0,1(X) = E[Y | X] ,

η0,2(X) = E[D | X]) ,

η0,3(X) = E[Z | X]) .

In this example, Λ is typically different than zero.

A.2 Additional Results for DML2 estimators

Let δn0 and bn0 be the functions defined in Assumption 3.2. For j ̸= i, define

b̃n0(Xi) = E [bn0(Xj, Xi) | Xi] .

Recall ηi = η0(Xi) and consider the following notation:

J0 = E [ψa(Wi, ηi)] , (A-1)

Di = J−1
0 (∂ηm(Wi, θ0, η)|η=ηi) . (A-2)

Using the previous notation, consider the stochastic approximation terms:

• T l
n,K is the asymptotic second-order linear term and

T l
n,K = n−1/2

n∑
i=1

∆⊤
i Di , (A-3)

where ∆i and Di are as in (3.13) and (A-2), respectively.

• T dml2
n is the asymptotic high-order DML term of the DML2 estimator and

T dml2
n = −n−1/2

(
n−1/2

n∑
i=1

mi/J0

)(
n−1/2

n∑
i=1

(ψa
i − J0)/J0

)
. (A-4)

• T dml1
n,K is the asymptotic high-order DML term of the DML1 estimator

T dml1
n,K = −n−1/2

K∑
k=1

(
n
−1/2
k

∑
i∈Ik

mi/J0

)(
n
−1/2
k

∑
i∈Ik

(ψa
i − J0)/J0

)
, (A-5)

where mi = m(Wi, θ0, ηi), ψ
a
i = ψa(Wi, ηi), and nk = n/K.
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The next assumption complements Assumption 3.3 to derive valid stochastic expansions

for DML2 estimators when φ1 < φ2.

Assumption A.1.

(a) The following limits exist and are finite,

Gl
δ = lim

n0→∞
E
[(
δn0(Wj, Xi)

⊤Di

) (
δn0(Wi, Xj)

⊤Dj + δn0(Wj, Xi)
⊤Di

)]
, (A-6)

Gl
b = lim

n0→∞
E
[
(mi/J0) b̃n0(Xi)

⊤Di

]
. (A-7)

(b) Gl
δ > 0 .

The next theorem is an extension of Theorem 3.3. It considers valid stochastic expansions

for (φ1, φ2) ∈ (1/4, 1/2)× (1/4, 1). It uses the following notation:

• R1 = {(φ1, φ2) ∈ (1/4, 1/2)× (1/4, 1) : φ1 < 1/3 or φ2 < 1/2}.

• R2 = {(φ1, φ2) ∈ (1/4, 1/2)× (1/4, 1) : φ1 ≥ 1/3, φ2 ≥ 1/2, (φ1, φ2) /∈ R3}.

• R3 = {(φ1, φ2) ∈ (1/4, 1/2)× (1/4, 1) : φ1 ≥ 3/8, φ2 ≥ 1/2, φ1 + φ2 ≥ 1}.

Theorem A.1. Suppose Assumptions 3.1, 3.2, and 3.3 hold. In addition, assume that K is

such that K ≤ n and K → ∞ as n→ ∞. If φ1 ∈ (1/4, 1/2), and φ1 ≤ φ2, then

n1/2(θ̂n,2 − θ0) = Tn,K +Rn,K , (A-8)

where ζ = min{4φ1 − 1, φ1 + φ2 − 1/2}, θ̂n,2 is as in (2.7), and

• Case 1: Tn,K = T ∗
n + T nl

n,K if (φ1, φ2) ∈ R1, where T ∗
n is defined in (3.11) and

T ∗
n

d→ N(0, σ2) with σ2 defined in (2.11), T nl
n,K is defined in (3.12) and satisfies (i)

limn→∞ infK≤n V ar[n
2φ1−1T nl

n,K ] > 0 and (ii) limn→∞ supK≤nE[(n
2φ1−1T nl

n,K)
2] <∞.

For the next two cases, suppose in addition that Assumption A.1 holds.

• Case 2: Tn,K = T ∗
n + T nl

n,K + T l
n,K if (φ1, φ2) ∈ R2, where T ∗

n and T nl
n,K are defined as

in Case 1, T l
n,K is defined in (A-3) and satisfies (i) limn→∞ infK≤n V ar[n

φ1T l
n,K ] > 0

and (ii) limn→∞ supK≤nE[(n
φ1T l

n,K)
2] <∞.

• Case 3: Tn,K = T ∗
n + T nl

n,K + T l
n,K + T dml2

n if (φ1, φ2) ∈ R3, where T ∗
n , T nl

n,K, T l
n,K

are defined as in Case 1 and 2, T dml2
n is defined in (A-4) and n1/2T dml2

n has a non-

degenerate limit distribution.
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with

lim
n→∞

sup
K≤n

P
(
nζ |Rn,K | > ϵ

)
= 0 ,

for any given ϵ > 0.

Remark A.1. When K is fixed as n → ∞ and (φ1, φ2) ∈ R3, the following stochastic

expansion can be derived for DML1 estimators,

n1/2(θ̂n,1 − θ0) = T ∗
n + T nl

n,K + T nl
n,K + T dml1

n + op(n
−ζ) ,

where ζ = min{4φ1 − 1, φ1 + φ2 − 1/2} and T dml1
n is defined in (A-5). Furthermore, the

stochastic expansion presented for DML2 in Theorem A.1 for case 3 ((φ1, φ2) ∈ R3) is also

valid when K is fixed as n→ ∞. For convenience, it is presented below

n1/2(θ̂n,2 − θ0) = T ∗
n + T nl

n,K + T nl
n,K + T dml2

n + op(n
−ζ) .

These expressions show that, for the values of (φ1, φ2) ∈ R3, both stochastic expansions are

only different in T dml1
n and T dml2

n , which capture the effects of implementing DML.

Theorem A.2. Suppose Assumptions 3.1, 3.2, and 3.3 hold. In addition, assume that K is

such that K ≤ n and K → ∞ as n→ ∞. If φ1 ∈ (1/4, 1/2), φ2 < 1, and φ1 ≤ φ2, then

E[Tn,K ] = FKn
1/2−2φ1 + νn,K ,

where

FK =

(Fδ + Fb)
(
1 + 1

K−1

)2φ1 if φ1 = φ2 ,

Fδ

(
1 + 1

K−1

)2φ1 if φ1 < φ2 ,
(A-9)

and

sup
K≤n

|νn,K | = o(n1/2−2φ1) ,

with Tn,K defined as in Theorem A.1, and Fδ and Fb defined as in (3.3) and (3.4), respectively.

Theorem A.3. Suppose Assumptions 3.1, 3.2, and 3.3 hold. In addition, assume that K is

such that K ≤ n and K → ∞ as n→ ∞. If φ1 ∈ (1/4, 1/2), φ2 < 1, and φ1 ≤ φ2, then

Var[Tn,K ] = σ2 + ΩK/n
ζ + rn,K ,
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where

ΩK =


Gb

(
K

K−1

)ζ
if 3φ1 − 1/2 > φ2 ,(

Gδ
K2−3K+3
(K−1)2

+Gb

) (
K

K−1

)ζ
if 3φ1 − 1/2 = φ2 ,

Gδ

(
(K2−K+3)
(K−1)2

) (
K

K−1

)ζ
if 3φ1 − 1/2 < φ2 ,

(A-10)

and

sup
K≤n

|rn,K | = o(n−ζ) ,

with ζ = min{4φ1 − 1, φ1 + φ2 − 1/2}, Tn,K defined as in Theorem A.1, and σ2, Gδ and Gb

defined as in (2.11), (3.2), and (3.5), respectively.

Corollary A.1. Suppose Assumptions 3.1, 3.2, and 3.3 hold. In addition, assume that K

is such that K ≤ n and K → ∞ as n→ ∞. If φ1 ∈ (1/4, 1/2), φ2 < 1, and φ1 ≤ φ2, then

E[T 2
n,K ] = σ2 + Ω̃K/n

ζ + r̃n,K ,

where

Ω̃K =


Gb

(
K

K−1

)ζ
if 3φ1 − 1/2 > φ2 ,(

Gδ
K2−3K+3
(K−1)2

+Gb + F 2
δ

(
K

K−1

)) (
K

K−1

)ζ
if 3φ1 − 1/2 = φ2 ,(

Gδ
(K2−3K+3)

(K−1)2
+ F 2

δ

(
K

K−1

)) (
K

K−1

)ζ
if 3φ1 − 1/2 < φ2 ,

(A-11)

sup
K≤n

|r̃n,K | = O(n1/2−2φ1) ,

with ζ = min{4φ1 − 1, φ1 +φ2 − 1/2}, Tn,K defined as in Theorem A.1, and σ2, Fδ, Gδ, and

Gb defined as in (2.11), (3.3), (3.5), and (3.2), respectively.

Tuning of Nuisance Parameters

The second-order asymptotic MSE can be defined by

SO-MSE[θ̂n,2] = σ2/n+ Ω̃K/n
ζ+1 , (A-12)

where σ2 is the variance of the asymptotic distribution of the estimator θ̂n,2 defined in (2.11),

Ω̃K is the higher-order asymptotic MSE defined in (A-11), ζ = min{4φ1 − 1, φ1 +φ2 − 1/2},
φ1 is such that n−2φ1 is the convergence rate of the variance of the nuisance parameter

estimator, and φ2 is such that n−φ2 is the convergence rate of the bias of the nuisance

parameter estimator.
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The explicit formulas for the second-order asymptotic MSE show that tuning the nui-

sance parameter estimators optimally may still be suboptimal for estimating θ0. Available

recommendations for tuning the nuisance parameter estimators often rely on minimizing an

out-of-sample prediction error, which can be interpreted as recommendations that minimize

the asymptotic integrated mean squared error and guarantee optimal convergence rates for

the nuisance parameter estimators. However, it is unclear if these recommendations are

optimal for estimating the parameter of interest. In particular, the optimal tuning of the

estimators for the nuisance parameter η0 alone may be suboptimal for the parameter of in-

terest θ0. To illustrate this point, I consider Example 2.1 (ATE) using the Nadaraya-Watson

(N-W) estimators for the nuisance parameter η0. More concretely, I first obtain the values

of φ1 and φ2 associated with the N-W estimators, and I then use them in (A-12) to derive

the optimal convergence rate of the bandwidth based on the criterion.

For the sake of exposition I consider the case where the covariate X is univariate (e.g.,

dx = 1), and the N-W uses a second-order kernel; see Appendix A.3 for additional details

for the general case. Let hj = cjn
−φ0

0 be the bandwidth used for estimating the component

η0,j of η0, where cj is a given positive constant and n0 = ((K − 1)/K)n is the sample size

used for the estimation. In this case, it can be shown that

φ1 = (1− φ0)/2 and φ2 = 2φ0 , (A-13)

where φ0 ∈ [1/5, 1/2) to guarantee that φ1 ∈ (1/4, 1/2) and φ1 ≤ φ2. Using this notation,

it follows that

ζ = min{1− 2φ0, 3φ0/2} . (A-14)

which is lower or equal than 3/7.

In this example, the optimal convergence rate of the second term in (A-12) is O(n−10/7)

since ζ ≤ 3/7. This convergence rate is achieved when the bandwidth has a convergence

rate n−2/7 (i.e., φ0 = 2/7). Importantly, this convergence rate is different than the optimal

convergence rate of the bandwidth for the N-W estimators, which is n−1/5. Therefore, the

optimal tuning of the estimators for the nuisance parameter η0 alone is suboptimal for the

parameter of interest in this case.

Remark A.2. When dx = 1 and the N-W estimator uses a second order kernel, then (A-13)

also holds for Examples 2 and 3, and the other examples in Appendix A.1. Therefore,

the conclusions derived here also apply to these examples. Appendix A.3 presents additional

details and further discussion on the derivation of a general version of (A-13) when covariates

X have dimension dx and the N-W estimator uses a kernel of order s > dx/2.
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A.3 Results for Nadaraya-Watson Estimators

This section presents explicit expressions for φ1, φ2 , δn, and bn when the nuisance parameter

estimator η̂ is the Nadaraya-Watson (N-W) estimator. Specifically, it considers the N-W

estimators with a common bandwidth for all coordinates, where the kernel function is the

product of the same univariate kernels:

Kh(x) = h−dx

dx∏
ℓ=1

K(xℓ/h) , x ∈ Rdx

where h = Chn
−φ0 is the bandwidth and K(·) is a bounded symmetric kernel of order s.

Let η0,j(x) be the jth component of the nuisance parameter η0. Let f(x) be the density

function of the covariates X at x. In what follows, I consider three possible types for this

component:

Type 1: Simple conditional expectation, η0,j(x) = E[Y | X = x]. In this case,

η̂0,j(x) =

∑n
ℓ=1 YℓKh(x−Xℓ)∑n
ℓ=1Kh(x−Xℓ)

.

By matching the convergence rate of the variance of this estimator ((nhd)−1) with n−2φ1 , it

follows that:

φ1 = (1− dxφ0)/2 ,

and by matching the convergence rate of the bias of this estimator (hs) with n−φ2 , it follows

that:

φ2 = sφ0 .

Finally, the jth component of the functions δn and bn are given by

δn,j(W,x) = C
−dx/2
h hdx/2 (Y − η0,j(X))Kh (x−X) /f(x) ,

bn,j(W,x) = h−s (η0,j(X)− η0,j(x))Kh (x−X) /f(x) ,

where X is a sub-vector of W = (Y,X). Note that the dependence of these functions on n

is due to the definition of bandwidth h = Chn
−φ0 .

Type 2: Conditional expectation of a sub-group, η0,j(x) = E[Y | A = 1, X = x]. In this

case,

η̂0,j(x) =

∑n
ℓ=1 YℓAℓKh(x−Xℓ)∑n
ℓ=1AℓKh(x−Xℓ)

.
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The same arguments presented for type 1 imply

φ1 = (1− dxφ0)/2 ,

φ2 = sφ0 .

Finally, the jth component of the functions δn and bn are given by

δn,j(W,x) = C
−dx/2
h hdx/2 {(Y A− g1(X))− η0,j(x) (A− g2(X))}Kh (x−X) /f(x) ,

bn,j(W,x) = h−s {(g1(X)− g1(x))− η0,j(x) (g2(X)− g2(x))}Kh (x−X) /f(x) ,

where g1(x) = E[Y A | X = x] and g2(x) = E[A | X = x], X is a sub-vector of

W = (Y,A,X).

Type 3: Inverse of propensity score, η0,j(x) = (E[A | X = x])−1. In this case,

η̂0,j(x) =

∑n
ℓ=1Kh(x−Xℓ)∑n

ℓ=1AℓKh(x−Xℓ)
.

Under standard assumptions, it can be shown that η̂0,j has the same convergence rates for

the variance and bias. Therefore, the arguments presented for type 1 also apply and imply,

φ1 = (1− dxφ0)/2 ,

φ2 = sφ0 .

Finally, the jth component of the functions δn and bn are given by

δn,j(W,x) = −C−dx/2
h hdx/2 (η0,j(x))

2 (A− g2(X))Kh (x−X) /f(x)

bn,j(W,x) = −h−s (η0,j(x))
2 (g2(X)− g2(x))Kh (x−X) /f(x)

where g2(x) = E[A | X = x] and X is sub-vector of W = (A,X).

Remark A.3. Any component of the nuisance parameters considered in Examples 2.1, 2.2,

2.3, A.1, A.2, A.3, and A.4 is of Type 1, 2, or 3, with minor modification (e.g., η0,4 =

E[1− A | X] in Example 2.1 is of type 3).
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B Proofs of Main Results

B.1 Proof of Theorems 3.1 and 3.2

The proof of these theorems relies on the following decomposition,

n1/2
(
θ̂n,j − θ0

)
= n1/2

(
θ̂n,j − θ̂∗n,j

)
+ n1/2

(
θ̂∗n,j − θ0

)
. (B-1)

and three intermediate results. The first two results are Theorems C.1 and C.2 in Appendix

C that imply n1/2
(
θ̂n,j − θ̂∗n,j

)
= op(1) for j = 1, 2, respectively. These intermediate results

rely on part (c) and (d) of Assumption 3.2 to accommodate the challenging situation that

arises in the proof due toK → ∞ as n→ ∞. The third result is Proposition C.1 in Appendix

C that calculates the asymptotic distribution of n1/2
(
θ̂∗n,j − θ0

)
for j = 1, 2. These three

results and (B-1) complete the proof of the theorem.

B.2 Proof of Theorem 3.3

This follows from Theorem A.1 when φ1 = φ2.

B.3 Proof of Theorem 3.4

This follows from Theorem A.2 when φ1 = φ2.

B.4 Proof of Theorem 3.5

This follows from Theorem A.3 when φ1 = φ2.

B.5 Proof of Theorem A.1

The proof of (A-8) in this theorem relies on the following decomposition,

n1/2
(
θ̂n,2 − θ0

)
= n1/2

(
θ̂n,2 − θ̂∗n,2

)
+ n1/2

(
θ̂∗n,2 − θ0

)
. (B-2)

and two intermediate results. The first result is Theorem C.2 in Appendix C that implies

n1/2
(
θ̂n,2 − θ̂∗n,2

)
= T nl

n,K + T l
n,K + R̂n,K ,

where nζR̂n,K converges to zero in probability uniformly on K → ∞ as n→ ∞ (equivalently,

limn→∞ supK≤n P (n
ζ |R̂n,K | > ϵ) = 0 for any given ϵ > 0). For case 1, it follows that nζT l

n,K
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converges to zero in probability uniformly on K → ∞ as n→ ∞. Proposition C.4 implies (i)

limn→∞ infK≤n V ar[n
2φ1−1T nl

n,K ] > 0 and limn→∞ supK≤nE[(n
2φ1−1T nl

n,K)
2] < ∞. For case 2

and 3, under Assumption A.1, Proposition C.3 implies that (i) limn→∞ infK≤n V ar[n
φ1T l

n,K ] >

0 and limn→∞ supK≤nE[(n
φ1T l

n,K)
2] <∞.

The second result is Proposition C.2 in Appendix C that implies

n1/2
(
θ̂∗n,2 − θ0

)
= T ∗

n + T dml2
n +Op(n

−1) . (B-3)

This expansion is independent of the number of folds K since the oracle version of DML2

defined in (2.9) does not depend on sample splitting. Furthermore, it is valid for a larger

class of parameters identified by (2.1) and can be obtained by standard arguments (e.g.,

Newey and Smith (2004)). Central Limit Theorem implies T ∗
n → N(0, σ2), and Proposition

C.2 implies n1/2T dml2
n has a non-degenerate limit distribution. Finally, note that in case 1

and 2, nζT dml2
n converges to zero in probability uniformly on K → ∞ as n → ∞ (since

T dml2
n does not depend on K). In case 3, the remainder error term in (B-3) scaled by nζ ,

nζOp(n
−2) converges to zero in probability uniformly on K → ∞ as n→ ∞, since equation

(B-3) does not depend on K.

The proof of (A-8) is completed by adding the previous two results in their respective

case.

B.6 Proof of Theorem A.2

The proof of this theorem considers the definition of Tn,K with more terms (case 3),

Tn,K = T ∗
n + T l

n,K + T l
n,K + T dml2

n ,

and two intermediate results. The first result is Proposition C.3 that shows E[T l
n,K ] = 0 and

Proposition C.4 that shows

E[T nl
n,K ] = Fδ

(
K

K − 1

)2φ1

n1/2−2φ1 + Fb

(
K

K − 1

)2φ2

n1/2−2φ2 + νn,K .

The calculation of these terms relies on the structure imposed by part (a) of Assumption 3.2,

and the Neyman orthogonality condition implied by part (b) of Assumption 3.1. The second

result is Proposition C.2 in Appendix C that shows E[T ∗
n ] = 0 and E[T dml2

n ] = Λn−1/2.

These two results and the definition of Tn,K complete the proof. For Tn,K in case 1 or 2, the

proof is analogous and uses that E[T dml2
n ] = Λn−1/2 do not depend on K and is o(n1/2−2φ1).
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B.7 Proof of Theorem A.3

In the proof of the next theorem, xn,K = o(1) denotes a real valued sequence xn,K converging

to zero uniformly on K → ∞ as n→ ∞ (equivalently, limn→∞ supK≤n |xn,K | = 0).

The proof of this theorem considers the definition of Tn,K with more terms (case 3) since

the other two cases follow similarly.

Var[Tn,K ] = Var[T ∗
n + T l

n,K + T l
n,K + T dml2

n ] ,

= Var[T ∗
n + T l

n,K ] + Var[T l
n,K + T dml2

n ] + 2Cov(T ∗
n + T l

n,K , T l
n,K + T dml2

n )

(1)
= Var[T ∗

n + T l
n,K ] + Var[T dml2

n ] + 2Cov(T ∗
n , T dml2

n ) + n−ζo(1) , (B-4)

where (1) holds by the auxiliary results presented in Appendix C. More concretely, Proposi-

tion C.3 implies supK≤n Var[T l
n,K ] = o(n−ζ) and supK≤nCov(T l

n,K , T dml2
n ) = o(n−ζ), respec-

tively, part 3 and 4 of Proposition C.4 imply supK≤nCov(T nl
n,K , T l

n,K + T dml2
n ) = o(n−ζ), and

part 1 of Proposition C.5 implies supK≤nCov(T ∗
n , T l

n,K) = o(n−ζ).

To complete the proof, I present below explicit expressions for each of the first three

terms in (B-4). Part 4 of Proposition C.2 is used to compute the second and third terms in

(B-4). It shows

Var[T dml2
n ] + 2Cov(T ∗

n , T dml2
n ) = Λ1n

−1 +O(n−2) .

These calculations are independent of the assumptions on the nuisance parameter estimators

and the number of folds since the oracle version of DML2 does not depend on sample splitting.

Part 3 of Proposition C.2 calculates Var[T ∗
n ], part 2 of Proposition C.4 calculates Var[T l

n,K ],

and part 2 of Proposition C.5 calculates Cov(T ∗
n , T l

n,K). All these expressions together com-

pute the first term in (B-4). That is

Var[T ∗
n + T l

n,K ] = σ2 +Gδ

(
K2 − 3K + 3

(K − 1)2

)
n1−4φ1

0 +Gbn
1/2−φ1−φ2

0 + o(n−ζ) (B-5)

These calculations all depend on the structure imposed by part (a) of Assumption 3.2.

Finally, there are three possible cases based on ζ = min{4φ1− 1, φ1+φ2− 1/2}. First, if
3φ1 − 1/2 > φ2 it follows that ζ = φ1 + φ2 − 1/2 < 4φ1 − 1 and the second term in (B-5) is

o(n−ζ). In this case, the third term in (B-5) equals ΩKn
−ζ . Second, if 3φ1 − 1/2 = φ2, then

ζ = 4φ1 − 1. In this case, the sum of the second and third terms in (B-5) equals ΩKn
−ζ .

Third, if 3φ1 − 1/2 < φ2, then ζ = 4φ1 − 1 < φ1 + φ2 − 1/2 and the third term in (B-5) is

o(n−ζ). In this case, the second term in (B-5) equals ΩKn
−ζ .
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C Auxiliary Results

The next result guarantees that a first-order equivalence property holds for the estimators

based on DML and their oracle versions, even when K grows with the sample size.

Theorem C.1. Suppose Assumptions 3.1 and 3.2 hold. In addition, assume K is such that

K ≤ n, K → ∞ and K/
√
n → c ∈ [0,∞) as n → ∞. If φ1 ≤ 1/2 and 1/4 < min{φ1, φ2},

then

n1/2
(
θ̂n,1 − θ̂∗n,1

)
= op(1)

where θ̂n,1 and θ̂∗n,1 are as in (2.6) and (2.8), respectively.

Proof. See Section E.1 in Appendix E

Theorem C.2. Suppose Assumptions 3.1 and 3.2 hold. In addition, assume that K is such

that K ≤ n and K → ∞ as n→ ∞. If φ1 ∈ (1/4, 1/2), and φ1 ≤ φ2, then

n1/2
(
θ̂n,2 − θ̂∗n,2

)
= op(1) ,

where θ̂n,2 and θ̂∗n,2 are defined as (2.7) and (2.9), respectively. Furthermore, if Assumption

3.3 holds, then

n1/2
(
θ̂n,2 − θ̂∗n,2

)
= T l

n,K + T l
n,K + R̂n,K

where

lim
n→∞

sup
K≤n

P (nζ |R̂n,K | > ϵ) = 0 ,

for any fixed ϵ > 0, with ζ = min{4φ1−1, φ1+φ2−1/2}, T l
n,K defined as in (3.12) and satisfies

(i) limn→∞ infK≤n V ar[n
2φ1−1T nl

n,K ] > 0 and (ii) limn→∞ supK≤nE[(n
2φ1−1T nl

n,K)
2] < ∞, and

T l
n,K defined as in (A-3) and satisfies limn→∞ supK≤nE[(n

φ1T l
n,K)

2] <∞.

Proof. See Section E.2 in Appendix E.

The next proposition calculates the asymptotic distribution of the oracle version of the

DML estimators defined in Remark 2.2.

Proposition C.1. Suppose Assumption 3.1. In addition, assume K is such that K ≤ n,

K → ∞ and K/nγ → c ∈ [0,∞) as n→ ∞. Then,

1. n1/2
(
θ̂∗n,1 − θ0

)
d→ N(cΛ, σ2) when γ = 1/2,

2. n1/2
(
θ̂∗n,2 − θ0

)
d→ N(0, σ2) when γ = 1,
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where θ̂∗n,1, θ̂
∗
n,2, σ

2, and Λ are as in (2.8), (2.9), (2.11), and (3.6), respectively.

Proof. See Section E.3 in Appendix E

The next proposition presents a stochastic expansion for the oracle version of the DML2

estimator, which does not depend on sample splitting or the number of folds K.

Proposition C.2. Suppose Assumption 3.1 holds. Then,

1. n1/2
(
θ̂∗n,2 − θ0

)
= T ∗

n + T dml2
n +Op(n

−1) and E[T dml2
n ] = Λn−1/2

2. E[T ∗
n ] = 0 and E[(T ∗

n )
2] = σ2

3. Cov(T ∗
n , T dml2

n ) = −Ξ1n
−1 and V ar[T dml2

n ] = (σ2σ2
a + Λ2)n−1 +O(n−2)

where

Ξ1 = E
[
(m(Wi, θ0, ηi)/J0)

2 (ψa(Wi, ηi)− J0)/J0
]

(C-1)

σ2
a = E

[
((ψa(Wi, ηi)− J0)/J0)

2] (C-2)

with J0 = E[ψa(Wi, ηi], ηi = η0(Xi), and θ̂∗n,2, σ
2, Λ, T ∗

n , and T dml2
n defined as in (2.9),

(2.11), (3.6), (3.11), and (A-4), respectively.

Proof. See Section E.4 in Appendix E.

Proposition C.3. Suppose Assumptions 3.1, 3.2, and A.1 hold. In addition, assume that

K is such that K ≤ n and K → ∞ as n→ ∞. If φ1 ≤ φ2, then

1. E[T l
n,K ] = 0

2. Var[T l
n,K ] = Gl

δ

(
K

K−1

)2φ1 n−2φ1 + rln,K, where supK≤n |rln,K | = o(n−2φ1).

3.
∣∣Cov(T dml2

n , T l
n,K)

∣∣ = o(n−2φ1).

where T l
n,K, T dml2

n , and Gl
δ are as in (A-3), (A-4), and (A-6), respectively.

Proof. See Section E.5 in Appendix E.

Proposition C.4. Suppose Assumptions 3.1, 3.2, and A.1 hold. In addition, assume that

K is such that K ≤ n and K → ∞ as n→ ∞. If φ1 ≤ φ2 and φ1 ∈ (1/4, 1/2), then

1. E[T nl
n,K ] = Fδ

(
K

K−1

)2φ1 n1/2−2φ1 + Fb

(
K

K−1

)2φ2 n1/2−2φ2 + νnln,K, where supK≤n |νn,K | =
o(n1/2−2φ1).

2. V ar[T nl
n,K ] = Gδ

(
(K2−3K+3)

(K−1)2

) (
K

K−1

)4φ1−1
n1−4φ1 + rnln,K, where |rnln,K | = o(n−ζ) .
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3. supK≤n

∣∣Cov(T dml2
n , T nl

n,K)
∣∣ = o(n−ζ)

4. supK≤n

∣∣Cov(T l
n,K , T nl

n,K)
∣∣ = o(n−ζ)

where ζ = min{4φ1 − 1, φ1 + φ2 − 1/2}, and T l
n,K, T nl

n,K, T dml2
n , Fδ, Fb, and Gδ are as in

(A-3), (3.12), (A-4), (3.3), (3.4), and (3.2), respectively.

Proof. See Section E.6 in Appendix E.

Proposition C.5. Suppose Assumptions 3.1, 3.2, and A.1 hold. In addition, assume that

K is such that K ≤ n and K → ∞ as n → ∞. If φ1 ∈ (1/4, 1/2), φ2 < 1, and φ1 ≤ φ2.

Then,

1. Cov(T ∗
n , T l

n,K) = Gl
b

(
K

K−1

)φ2 n−φ2 + rcov,ln,K , where supK≤n |r
cov,l
n,K | = o(n−φ2).

2. Cov(T ∗
n , T l

n,K) =
Gb

2

(
K

K−1

)1/2−φ1−φ2 n1/2−φ1−φ2+rcov,nln,K , where supK≤n |r
cov,nl
n,K | = o(n−ζ).

where ζ = min{4φ1 − 1, φ1 + φ2 − 1/2}, and T ∗
n , T l

n,K, T nl
n,K, Gb, and G

l
b are as in (3.11),

(A-3), (3.12), (3.5), and (A-7), respectively.

Proof. See Section E.7 in Appendix E.

The next lemma is useful to prove intermediate results such as Lemmas C.2 and C.3.

Lemma C.1. Let Assumption 3.2 hold. Then, there exists a positive constant C = C(p,M1)

such that for any i ∈ Ik and k ∈ {1, . . . , K}

1. E
[
||n−1/2

0

∑
ℓ/∈Ik n

−φ1

0 δn0(Wℓ, Xi)||4
]
≤ Cn−4φ1

0

2. E
[
||n−1

0

∑
ℓ/∈Ik n

−φ2

0 bn0(Wℓ, Xi)||4
]
≤ C(n−4φ1

0 + n−4φ2

0 )

Proof. See Section E.8 in Appendix E.

Lemma C.2. Suppose that Assumptions 3.1 and 3.2 hold. In addition, assume that K is

such that K ≤ n and K → ∞ as n→ ∞. If φ1 ≤ 1/2 and 1/4 < min{φ1, φ2}, then

1. For z = a, b,

lim
M̃→∞

lim
n→∞

sup
K≤n

P

(
nmin{φ1,φ2}+1/2

∣∣∣∣∣n−1

n∑
i=1

(η̂i − ηi)
⊤∂ηψ

z(Wi, ηi)

∣∣∣∣∣ > M̃

)
= 0 ,

2. For z = a, b,

lim
M̃→∞

lim
n→∞

sup
K≤n

P

(
n2min{φ1,φ2}

∣∣∣∣∣n−1

n∑
i=1

ψz(Wi, η̂i)− ψz(Wi, ηi)

∣∣∣∣∣ > M̃

)
= 0 ,
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3.

lim
M̃→∞

lim
n→∞

sup
K≤n

P

(
nmin{φ1,φ2}−1/2

∣∣∣∣∣n−1

n∑
i=1

(η̂i − ηi)
⊤∂ηm(Wi, θ0, ηi)

∣∣∣∣∣ > M̃

)
= 0 ,

4. Let Zn,K = n−1/2
∑n

i=1 (m(Wi, θ0, η̂i)−m(Wi, θ0, ηi)) /J0 −
(
T l
n,K + T nl

n,K

)
, then

lim
M̃→∞

lim
n→∞

sup
K≤n

P
(
n−1/2+3min{φ1,φ2} |Zn,K | > M̃

)
= 0 ,

where ηi = η0(Xi), η̂i is as in (2.5), J0 = E[ψa(Wi, ηi)], and T l
n,K and T nl

n,K are as in

(A-3) and (3.12), respectively. Moreover, it holds limn→∞ supK≤nE[(n
2φ1−1T nl

n,K)
2] <∞ and

limn→∞ supK≤nE[(n
φ1T l

n,K)
2] <∞.

Furthermore, if Assumption 3.3 holds, then limn→∞ infK≤n V ar[n
2φ1−1T nl

n,K ] > 0; and if

Assumption A.1 holds, then limn→∞ infK≤n V ar[n
φ1T l

n,K ] > 0.

Proof. See Section E.9 in Appendix E.

Lemma C.3. Suppose Assumptions 3.1 and 3.2 hold. In addition, assume K is such that

K ≤ n, K → ∞ and K/
√
n→ c ∈ [0,+∞) as n→ ∞. If 1/4 < min{φ1, φ2} and φ1 ≤ 1/2,

then,

lim
n→∞

sup
K≤n

P

(
max

k=1,...,K

∣∣∣∣∣n−1/2
k

∑
i∈Ik

(η̂i − ηi)
⊤∂ηψ

z(Wi, ηi)

∣∣∣∣∣ > ϵ

)
= 0 , (C-3)

and

lim
n→∞

sup
K≤n

P

(
max

k=1,...,K
n−1
k

∑
i∈Ik

||η̂i − ηi||2 > ϵ

)
= 0 , (C-4)

for z = a, b, where η̂i is as in (2.5) and ηi = η0(Xi). In particular,

lim
n→∞

sup
K≤n

P

(
max

k=1,...,K

∣∣∣∣∣n−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤∂ηm(Wi, θ0, ηi)

∣∣∣∣∣ > ϵ

)
= 0 , (C-5)

and

lim
n→∞

sup
K≤n

P

(
max

k=1,...,K

∣∣∣∣∣n−1
k

∑
i∈Ik

ψa(Wi, η̂i)− ψa(Wi, ηi)

∣∣∣∣∣ > ϵ

)
= 0 (C-6)

for any given ϵ > 0.

Proof. See Section E.10 in Appendix E.

Lemma C.4. Suppose Assumption 3.2 holds. In addition, assume K is such that K ≤ n,

K → ∞ as n→ ∞. If φ1 ≤ 1/2, then
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1. limM̃→∞ limn→∞ supK≤n P
(
n4min{φ1,φ2}(n−1

∑n
i=1 ||η̂i − ηi||4) > M̃

)
= 0 ,

2. limn→∞ supK≤n n
2min{φ1,φ2}E [||η̂i − ηi||2] <∞ ,

3. limM̃→∞ limn→∞ supK≤n P
(
n2min{φ1,φ2}n−1

∑n
i=1 ||η̂i − ηi||2 > M̃

)
= 0 ,

4. limn→∞ supK≤n P
(
n−1/2

∑n
i=1 ||η̂i − ηi||2 > ϵ

)
= 0 when 1/4 < min{φ1, φ2} , for any

given ϵ > 0.

where ηi = η0(Xi) and η̂i is as in (2.5).

Proof. See Section E.11 in Appendix E.
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D Additional Simulation Results

(a) Bias (b) MSE (c) Coverage probability (%)

Figure D.8: Bias and MSE of estimators for the ATT-DID based on DML1 as in (2.7) for

different values of c in h = cn
−1/5
0 . Coverage probability of confidence intervals as in (5.1)

for the ATT-DID with a nominal level of 95%. Sample size n = 3, 000 and 5,000 simulations.
It uses a Second Order Gaussian Kernel

(a) Bias (b) MSE (c) Coverage probability (%)

Figure D.9: Bias and MSE of estimators for the ATT-DID based on DML2 as in (2.7) for

different values of c in h = cn
−1/5
0 . Coverage probability of confidence intervals as in (5.1)

for the ATT-DID with a nominal level of 95%. Sample size n = 3, 000 and 5,000 simulations.
It uses a Second Order Gaussian Kernel
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(a) Bias (b) MSE (c) Coverage Prob.(%)

Figure D.10: Bias and MSE of estimators for the LATE based on DML1 and DML2 as
in (2.8) and (2.9), respectively. Coverage probability of confidence intervals as in (5.1) but
using true σ2 for the LATE with a nominal level of 95%. Discrepancy measure Λ ̸= 0, sample
size n = 3, 000 and 5, 000 simulations.

(a) Bias (b) MSE (c) Coverage probability (%)

Figure D.11: Bias and MSE of estimators for the LATE based on DML1 as in (2.6) for

different values of c in h = cn
−1/5
0 . Coverage probability of confidence intervals as in (5.1) for

the LATE with a nominal level of 95%. Discrepancy measure Λ ̸= 0, sample size n = 3, 000
and 5, 000.
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